Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in TaiwanAbstract
Developmental delay has been associated with inefficient arsenic methylation capacity in preschool children. Folate and vitamin B12 are important nutrients that produce s-adenosylmethionine during single-carbon metabolism and provide methyl groups for arsenic methylation. The aim of the present study was to explore whether plasma folate and vitamin B12 levels influence arsenic methylation capacity and in turn are related to developmental delay in preschool children. A case–control study was conducted in 178 children with developmental delay and 88 normal children, who were recruited from Shin Kong Wu Ho-Su Memorial Teaching Hospital from August 2010 to March 2014. Arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) in the urine was determined by high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Plasma folate and vitamin B12 levels were measured using a SimulTRAC-SNB radioassay. The results show that the combination of high plasma folate and high vitamin B12 levels were correlated with efficient arsenic methylation capacity (low MMAV %, low InAs %, and high DMAV %). High MMAV % significantly increased and high DMAV % and secondary methylation index decreased the odds ratio (OR) of developmental delay in a dose-dependent manner in both low plasma folate and low vitamin B12 (low/low) groups; the multivariate OR and 95% confidence interval were 5.01 (0.83–30.06), 0.21 (0.04–1.23), and 0.20 (0.03–1.20), respectively. This is the first study to show that the combination of high plasma folate and high vitamin B12 levels increases arsenic methylation capacity and indirectly decreases the OR of developmental delay in preschool children.
|
Correction to: Protective effects of dioscin against alcohol‑induced liver injury
During the course of writing and revision of this paper, the band of GAPDH.
|
Response to Hethey et al., 2019 letter to the editor in archives of toxicology |
The new psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone) induces oxidative stress, apoptosis, and autophagy in primary rat hepatocytes at human-relevant concentrationsAbstract
3-Methylmethcathinone (3-MMC or metaphedrone) has become one of the most popular recreational drugs worldwide after the ban of mephedrone, and was recently deemed responsible for several intoxications and deaths. This study aimed at assessing the hepatotoxicity of 3-MMC. For this purpose, Wistar rat hepatocytes were isolated by collagenase perfusion, cultured and exposed for 24 h at a concentration range varying from 31 nM to 10 mM 3-MMC. The modulatory effects of cytochrome P450 (CYP) inhibitors on 3-MMC hepatotoxicity were evaluated. 3-MMC-induced toxicity was perceived at the lysosome at lower concentrations (NOEC 312.5 µM), compared to mitochondria (NOEC 379.5 µM) and cytoplasmic membrane (NOEC 1.04 mM). Inhibition of CYP2D6 and CYP2E1 diminished 3-MMC cytotoxicity, yet for CYP2E1 inhibition this effect was only observed for concentrations up to 1.3 mM. A significant concentration-dependent increase of intracellular reactive species was observed from 10 μM 3-MMC on; a concentration-dependent decrease in antioxidant glutathione defences was also observed. At 10 μM, caspase-3, caspase-8, and caspase-9 activities were significantly elevated, corroborating the activation of both intrinsic and extrinsic apoptosis pathways. Nuclear morphology and formation of cytoplasmic acidic vacuoles suggest prevalence of necrosis and autophagy at concentrations higher than 10 μM. No significant alterations were observed in the mitochondrial membrane potential, but intracellular ATP significantly decreased at 100 μM. Our data point to a role of metabolism in the hepatotoxicity of 3-MMC, which seems to be triggered both by autophagic and apoptotic/necrotic mechanisms. This work is the first approach to better understand 3-MMC toxicology.
|
A nongenomic mechanism for “metalloestrogenic” effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptorAbstract
Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a “metalloestrogen.” Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.
|
Developmental exposure to nonylphenol induced rat axonal injury in vivo and in vitroAbstract
Increasing evidence indicates that developmental exposure to nonylphenol (NP) causes damage to the central nervous system (CNS). As the most unique and primary component of neuron, axon is an essential structure for the CNS function. Here, we investigated whether developmental exposure to NP affected rat axonal development in vivo and in vitro. Our results showed that developmental exposure to NP 10, 50, and 100 mg/(kg day) caused an obvious decrease in axonal length and density in the hippocampus. Developmental exposure to NP also altered the expression of CRMP-2 and p-CRMP-2, and activated Wnt-Dvl-GSK-3β cascade in the hippocampus, the crucial signaling that regulates axonal development. Even months after the exposure, impairment of axonal growth and alteration of this cascade were not fully restored. In the primary cultured neurons, 30, 50, and 70 μM NP treatment decreased axonal length and impaired axonal function. Similar to in vivo results, it also activated Wnt-Dvl-GSK-3β cascade in cultured neurons. SB-216763, a specific GSK-3β inhibitor, recovered the shortening of axon and the impairment of axonal function induced by NP. Taken together, our results support the idea that exposure to NP induces axonal injury in the developing neurons. Furthermore, the activation of Wnt-Dvl-GSK-3β cascade contributes to the axonal injury induced by NP.
|
Genome-wide somatic mutation analysis via Hawk-Seq™ reveals mutation profiles associated with chemical mutagensAbstract
It is difficult to identify mutagen-induced genome-wide somatic mutations using next generation sequencing; hence, mutagenic features of each mutagen and their roles in cancer development require further elucidation. We described Hawk-Seq™, a highly accurate genome sequencing method and the optimal conditions, for using it to construct libraries that would enable the accurate (c.a. 1 error/107–108 bp) and efficient survey of genome-wide mutations. Genomic mutations in gpt delta mice or Salmonella typhimurium TA100 exposed to methylnitrosourea (MNU), ethylnitrosourea (ENU), diethylnitrosamine (DEN), benzo[a]pyrene (BP), and aristolochic acid (AA) were profiled using Hawk-Seq™ to analyse positions, substitution patterns, or frequencies. The resultant vast mutation data provided high-resolution mutational signatures, including for minor mutational fractions (e.g. G:C>A:T by AA), which enabled the clarification of the mutagenic features of all mutagens. The 96-type mutational signatures of MNU, AA, and BP indicate their partial similarity to signature 11, 22, and 4 or 29, respectively. Meanwhile, signatures attributable to ENU and DEN were highly similar to each other, but not to signature 11, suggesting that the mechanisms of these agents differed from those of typical alkylating agents. Thus, Hawk-Seq™ can clarify genome-wide chemical mutagenicity profiles at extraordinary resolutions, thereby providing insight into mutagen mechanisms and their roles in cancer development.
|
Development and analysis of an adverse outcome pathway network for human neurotoxicityAbstract
An adverse outcome pathway (AOP) network is an attempt to represent the complexity of systems toxicology. This study illustrates how an AOP network can be derived and analysed in terms of its topological features to guide research and support chemical risk assessment. A four-step workflow describing general design principles and applied design principles was established and implemented. An AOP network linking nine linear AOPs was mapped and made available in AOPXplorer. The resultant AOP network was modelled and analysed in terms of its topological features, including level of degree, eccentricity and betweenness centrality. Several well-connected KEs were identified, and cell injury/death was established as the most hyperlinked KE across the network. The derived network expands the utility of linear AOPs to better understand signalling pathways involved in developmental and adult/ageing neurotoxicity. The results provide a solid basis to guide the development of in vitro test method batteries, as well as further quantitative modelling of key events (KEs) and key event relationships (KERs) in the AOP network, with an eventual aim to support hazard characterisation and chemical risk assessment.
|
Microsomal prostaglandin E synthase 2 deficiency is resistant to acetaminophen-induced liver injuryAbstract
Acetaminophen (APAP)-induced liver injury is the main cause of acute liver failure. This study investigated the role of microsomal prostaglandin E synthase 2 (mPGES-2), discovered as one of the prostaglandin E2 (PGE2) synthases, in mediating APAP-induced liver injury. Using mPGES-2 wild-type (WT) and knockout (KO) mice, marked resistance to APAP-induced liver damage was found in mPGES-2 KO, as indicated by robust improvement of liver histology, changes in liver enzyme release, and marked decrease in APAP–cysteine adducts (APAP–CYS) and inflammatory markers. Moreover, the results confirmed that increase in liver PGE2 content in KO mice under basal conditions was not critical for the protection from APAP-induced liver injury. Importantly, mPGES-2 deletion inhibited the production of malondialdehyde (MDA), increasing glutathione (GSH) level. Enhanced GSH level may contribute to the inhibition of APAP toxicity in mPGES-2 KO mice. To further elucidate the role of mPGES-2 in the liver injury induced by APAP, adeno-associated viruses (AAV) were used to overexpress mPGES-2 in the liver. The results showed that mPGES-2 overexpression aggravates liver injury associated with an increase in inflammatory markers and chemokines after APAP treatment. Moreover, a lower level of GSH was detected in the mPGES-2 overexpression group compared to the control group. Collectively, our findings indicate that mPGES-2 plays a critical role in regulating APAP-induced liver injury, possibly by regulating GSH and APAP–CYS level, which may provide a potential therapeutic strategy for the prevention and treatment of APAP-induced liver injury.
|
Toxicokinetics of urinary 2-ethylhexyl salicylate and its metabolite 2-ethyl-hydroxyhexyl salicylate in humans after simulating real-life dermal sunscreen exposureAbstract
Chemical UV filters are common components in sunscreens and cosmetic products. The question of adverse health risks is not completely resolved, partly owing to lacking human data from dermal exposure, which are essential for sound risk assessment. Therefore, we investigated the urinary toxicokinetics of 2-ethylhexyl salicylate (EHS) after a 1-day dermal real-life sunscreen application scenario. Twenty human volunteers were dermally exposed to a commercial sunscreen for 9 h under real-life conditions (2 mg/cm2 body surface area; double re-application; corresponding to 3.8 g EHS). Urine samples were analyzed for EHS and one of its specific metabolites 2-ethyl-5-hydroxyhexyl salicylate (5OH-EHS) using a two-dimensional liquid chromatographic electrospray–ionization tandem mass spectrometric procedure. EHS and 5OH-EHS were excreted after sunscreen application and reached up to 525 µg/g and 213 µg/g creatinine, respectively. The toxicokinetic models showed concentration peaks between 7 and 8 h after first application. First-phase terminal half-lives were 8–9 h. For 5OH-EHS, a second-phase terminal half-life could be determined (87 h). EHS and 5OH-EHS showed a faster elimination with 70–80% of the overall excretion occurring within 24 h after application compared to more lipophilic UV filters. Cumulative excreted amounts over 24 h reached up to 334 µg EHS and 124 µg of 5OH-EHS. Simulated real-life sunscreen use for 1 day leads to the bioavailability of the UV filter EHS in humans. The kinetic profiles with a prolonged systemic availability indicate a skin depot and make accumulation during consecutive multi-day exposure likely.
|
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Κυριακή 1 Σεπτεμβρίου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
11:38 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου