Δευτέρα 16 Σεπτεμβρίου 2019

Varying Vegetation Composition, Respiration and Photosynthesis Decrease Temporal Variability of the CO 2 Sink in a Boreal Bog

Abstract

We quantified the role of spatially varying vegetation composition in seasonal and interannual changes in a boreal bog’s CO2 uptake. We divided the spatially heterogeneous site into six microform classes based on plant species composition and measured their net ecosystem exchange (NEE) using chamber method over the growing seasons in 2012–2014. A nonlinear mixed-effects model was applied to assess how the contributions of microforms with different vegetation change temporally, and to upscale NEE to the ecosystem level to be compared with eddy covariance (EC) measurements. Both ecosystem respiration (R) and gross photosynthesis (PG) were the largest in high hummocks, 894–964 (R) and 969–1132 (PG) g CO2 m−2 growing season−1, and decreased toward the wetter microforms. NEE had a different spatial pattern than R and PG; the highest cumulative seasonal CO2 sink was found in lawns in all years (165–353 g CO2 m−2). Microforms with similar wetness but distinct vegetation had different NEE, highlighting the importance of vegetation composition in regulating CO2 sink. Chamber-based ecosystem-level NEE was smaller and varied less interannually than the EC-derived estimate, indicating a need for further research on the error sources of both methods. Lawns contributed more to ecosystem-level NEE (55–78%) than their areal cover within the site (21.5%). In spring and autumn, lawns had the highest NEE, whereas in midsummer differences among microforms were small. The contributions of all microforms to the ecosystem-level NEE varied seasonally and interannually, suggesting that spatially heterogeneous vegetation composition could make bog CO2 uptake temporally more stable.

Fungi in the Canopy: How Soil Fungi and Extracellular Enzymes Differ Between Canopy and Ground Soils

Abstract

Tropical montane cloud forests contain a large abundance and diversity of canopy epiphytes, which depend on canopy soil to retain water and nutrients. We lack an in depth understanding of how these soils contribute to ecosystem processes and soil diversity and how sensitive they may be to projected climate change. We compared canopy and ground soils in Monteverde, Costa Rica, to determine how these two soil types differ in their extracellular enzyme activity (EEA) and fungal communities. Samples were also collected along two elevation gradients to reveal if canopy soils differed in how EEA and fungal communities responded to elevation compared to ground soils. We found that canopy soils had higher EEA than ground soils. Fungal communities were less diverse and differed significantly between the two soil types. These differences were associated with higher relative abundances of yeasts and endophytes in canopy soils. The relative abundances of free-living filamentous fungi and yeasts shifted more dramatically with elevation in canopy soils compared to ground soils. Our study suggests that canopy soils may be a reservoir for endophytes. Epiphytes may invest in symbionts that promote stress tolerance over mycorrhizal fungi whose high resource demands are costly and less beneficial. Overall, soils harbor distinct fungal communities that may be altered under projected climate change.

Alleviation of Plant Stress Precedes Termination of Rich Fen Stages in Peat Profiles of Lowland Mires

Abstract

Mesotrophic rich fens, that is, groundwater-fed mires, may be long-lasting, as well as transient ecosystems, displaced in time by poor fens, bogs, forests or eutrophic reeds. We hypothesized that fen stability is controlled by plant stress caused by waterlogging with calcium-rich and nutrient-poor groundwater, which limits expansion of hummock mosses, tussock sedges and trees. We analysed 32 European Holocene macrofossil profiles of rich fens using plant functional traits (PFTs) which indicate the level of plant stress in the environment: canopy height, clonal spread, diaspore mass, specific leaf area, leaf dry matter content, Ellenberg moisture value, hummock-forming ability, mycorrhizal status and plant functional groups. Six PFTs, which formed long-term significant trends during mire development, were compiled as rich fen stress indicator (RFSI). We found that RFSI values at the start of fen development were correlated with the thickness of subsequently accumulated rich fen peat. RFSI declined in fens approaching change into another mire type, regardless whether it was shifting into bog, forest or eutrophic reeds. RFSI remained comparatively high and stable in three rich fens, which have not terminated naturally until present times. By applying PFT analysis to macrofossil data, we demonstrated that fens may undergo a gradual autogenic process, which lowers the ecosystem’s resistance and enhances shifts to other mire types. Long-lasting rich fens, documented by deep peat deposits, are rare. Because autogenic processes tend to alleviate stress in fens, high levels of stress are needed at initial stages of rich fen development to enable its long persistence and continuous peat accumulation.

Accounting for Carbon Flux to Mycorrhizal Fungi May Resolve Discrepancies in Forest Carbon Budgets

Abstract

Carbon (C) fluxes among different components of plant growth are important to forest ecosystem C cycling and are strongly influenced by species composition and resource availability. Although mycorrhizal fungi are crucial for nutrient acquisition and can receive a large fraction of annual net primary production, most studies do not explicitly include carbon flux to mycorrhizal fungi in ecosystem C budgets. We measured annual production of plant components (foliage, wood, fine roots) and mycorrhizal fungi across temperate forest stands varying in species composition. Production of mycorrhizal fungi was estimated using both mass balance and isotopic techniques. Total plant production varied from about 600 g C m−2 y−1 in nearly pure deciduous broadleaf stands down to about 300 g C m−2 y−1 in conifer-dominated stands. In contrast, the production of mycorrhizal fungi was highest in conifer-dominated stands, varying from less than 25 g C m−2 y−1 in deciduous broadleaf stands to more than 175 g C m−2 y−1 in nearly pure conifer stands. Isotopic data indicated that both tree species composition and ecosystem nitrogen (N) availability influenced rates of fungal production. The large investment in mycorrhizal fungi in low-N, conifer-dominated stands demonstrated that a full accounting of ecosystem carbon fluxes to plant and fungal components may help resolve current discrepancies observed in broadscale forest carbon budgets, especially across forest types.

Droughts Decouple African Savanna Grazers from Their Preferred Forage with Consequences for Grassland Productivity

Abstract

Grazing lawn and flammable-tussock grass communities are contrasting resource pools for mammalian grazers in terms of forage quantity and quality. Drought events fundamentally alter forage availability within these communities and therefore should alter herbivore use with repercussions for the recovery and functioning of ecosystems after drought. During and after an intense El Niño drought (2014–2017) in Kruger National Park, South Africa, we addressed two questions: (1) how does herbivore use of different grass types change during a drought and (2) how do these changes affect grass productivity post-drought? We monitored grazer use of three different grass communities (lawn, tussock and burned-tussock) at a landscape scale and measured primary productivity monthly during and post-drought. For the first drought year, grazer numbers were highest on grazing lawn communities. This pattern continued into the second dry growing season, until herbivores finally left the study area. Both lawns and tussock grasslands recovered rapidly after the first good rainfall (productivity > 150 g m−2 per month). However, grazers did not return to feed on the same patches they had frequented pre-drought resulting in grazing lawn grasses self-shading and senescing. Longer droughts have the potential to decouple grazers and grazing lawns with negative impacts on lawn productivity and persistence that could drive the loss of lawns in savanna landscapes and impact mesoherbivore populations. It is clear from our results that grazer effects need to be incorporated into drought frameworks to understand the consequences of droughts for grassland function.

Effects of Nitrogen Deposition on the Abundance and Metabolism of Lichens: A Meta-analysis

Abstract

Lichens are the key to nutrient cycling and trophic networks in many terrestrial ecosystems and are good bioindicators of air pollution, including nitrogen (N) deposition. Experimental studies have shown that N deposition can reduce the abundance of lichens and alter their thallus chemistry and metabolism, but we currently lack information about how widespread this effect is and what are the environmental factors modulating the response of lichens to N. We carried out a meta-analysis of the literature about the effects of experimental N fertilization on lichen abundance and metabolism. We found thirty-nine articles from thirty-one experimental sites that met our search criteria. These studies showed that the addition of N accelerates lichen metabolism in the short term and decreases their abundance in the medium–long term. Early senescence of lichens is proposed as a possible mechanism linking the two observed responses. Chlorolichens from regions with high precipitation (> 1000 mm) and with a background N deposition of mixed origin (agricultural and industrial) were the most affected by N, in terms of both abundance and metabolism. Structural equation modelling showed that the rate of N addition was the main factor in modulating the response of lichens to N in terms of metabolism, whereas isothermality played a very important role in modulating the lichen response to N in terms of abundance. Our meta-analysis identified that excess N deposition reduces lichen abundance and increases the metabolism of sensitive species, especially across European ecosystems; lichens from more climatically benign regions (that is, greater precipitation and isothermality) are the most affected.

Nitrogen Enrichment Accelerates Mangrove Range Expansion in the Temperate–Tropical Ecotone

Abstract

Climate change and nutrient enrichment are two phenomena impacting coastal ecosystems. In coastal wetlands, mangroves in temperate–tropical ecotones are encroaching on adjacent saltmarshes, a pattern that is primarily attributed to warmer winter temperatures. Climate change is also expected to increase the vulnerability of coastal wetlands to eutrophication, and increases in nutrient availability may further mediate the rate of mangrove expansion. We investigated the consequences of nutrient enrichment on coastal wetlands in the mangrove–saltmarsh ecotone near the temperate edge of mangrove distribution along the northeast coast of Florida. We tested the hypothesis that nutrient enrichment enhances the ongoing, climate-driven expansion of mangroves into areas historically dominated by saltmarshes by increasing mangrove growth and cover, allowing them to outcompete and overgrow adjacent saltmarsh plants. We manipulated nitrogen (N) and phosphorus (P) availability and measured the effects on growth, cover, diversity, leaf traits, and nutrient dynamics of Avicennia germinans. We found that A. germinans shrubs growing in the saltmarsh–mangrove ecotone in northern Florida grew taller, increased their canopies, and had higher reproductive output when enriched with N compared to control plants and P-enriched plants. Nutrient enrichment did not alter Sarcocornia perennis growth and increased Batis maritima height but did not alter density or biomass. Nitrogen addition caused an increase in A. germinans cover and decrease in B. maritima cover and Simpson’s index of diversity, suggesting that N enrichment, an ongoing phenomenon, can hasten the invasion of mangroves into saltmarshes by favoring mangrove growth and reproduction without significantly enhancing saltmarsh plant growth.

Cumulative Effects of Disturbances on Soil Nutrients: Predominance of Antagonistic Short-Term Responses to the Salvage Logging of Insect-Killed Stands

Abstract

Nutrient cycling generally recovers rapidly following disturbance in forest ecosystems. Concerns have been expressed that the resilience of this function may be altered by enhanced disturbance frequency, and especially by the use of salvage logging. A sudden hemlock looper (Lambdina fiscellaria) outbreak in a boreal forest leading to tree mortality in discrete patches allowed us to evaluate the impact of disturbance type (logging vs insect defoliation) as well as the cumulative effects of both disturbances (that is, salvage logging of defoliated sites) on soil nutrients, providing a rare opportunity to test for interactions between these two disturbances. We assessed, within 2–3 years following treatments, whether both individual disturbances had distinct effects on soils properties and whether their cumulative effects were either additive, synergistic or antagonistic. Defoliation generally increased the soil nutrient concentrations, especially of soluble nitrogen forms, when compared to the undisturbed controls. The spatial heterogeneity of soil nutrient concentrations was also much greater in defoliated stands than in the other treatments. Logging alone had an effect that was less variable and generally of lower amplitude than defoliation. Contrary to what was expected, salvage logging led to soil properties that were more similar to those of undisturbed controls, indicating that antagonistic interactions occurred. Our results showed that, under the conditions of this study, salvage logging could reduce the potential for soil nutrient leaching and lead to more homogenous soil conditions. These results bring new light on the effect of cumulative disturbances and could be useful to guide post-disturbance forest management decisions.

Nitrogen Identity Drives Differential Impacts of Nutrients on Coral Bleaching and Mortality

Abstract

Nitrogen pollution increases the susceptibility of corals to heat-induced bleaching. However, different forms of nitrogen (nitrate vs. ammonium/urea) may have different impacts on thermal tolerance of corals. We used an 18-month field experiment on the oligotrophic fore reef of Moorea, French Polynesia, to test how different forms of nitrogen (nitrate vs. urea) impacted coral bleaching. The experiment spanned two moderate thermal stress events in 2016 and 2017. Nitrate increased bleaching prevalence in Acropora by up to 100% and in Pocillopora by up to 60% compared to control corals. Urea exposure often had intermediate effects on bleaching (not different from either control or nitrate-exposed corals) in both taxa. Importantly, nitrate prolonged bleaching in both Acropora and Pocillopora as nitrate-exposed corals remained bleached even after thermal stress ended, while control and urea-exposed corals had mostly recovered. Nitrate exposure also increased the prevalence of partial mortality in Pocillopora colonies and more than tripled the number of colonies that completely died. Our data are the first to show contrasting effects of different forms of nitrogen on coral bleaching and mortality in a natural reef environment, linking previous patterns from large-scale correlative studies with results from more mechanistic laboratory experiments. Most importantly, we showed that corals exposed to nitrate exhibited more frequent bleaching, bleached for longer duration, and were more likely to die than corals in low nitrogen conditions. Exposure to excess nitrogen, particularly anthropogenic nitrogen, may lower the temperature threshold at which corals bleach, triggering bleaching events on polluted reefs even when typical thermal stress thresholds have not been crossed.

Permafrost Hydrology Drives the Assimilation of Old Carbon by Stream Food Webs in the Arctic

Abstract

Permafrost thaw in the Arctic is mobilizing old carbon (C) from soils to aquatic ecosystems and the atmosphere. Little is known, however, about the assimilation of old C by aquatic food webs in Arctic watersheds. Here, we used C isotopes (δ13C, Δ14C) to quantify C assimilation by biota across 12 streams in arctic Alaska. Streams spanned watersheds with varying permafrost hydrology, from ice-poor bedrock to ice-rich loess (that is, yedoma). We measured isotopic content of (1) C sources including dissolved organic C (DOC), dissolved inorganic C (DIC), and soil C, and (2) stream biota, including benthic biofilm and macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). Findings document the assimilation of old C by stream biota, with depleted Δ14C values observed at multiple trophic levels, including benthic biofilm (14C ages = 5255 to 265 years before present (y BP)), macroinvertebrates (4490 y BP to modern), and fish (3195 y BP to modern). Mixing model results indicate that DOC and DIC contribute to benthic biofilm composition, with relative contributions differing across streams draining ice-poor and ice-rich terrain. DOC originates primarily from old terrestrial C sources, including deep peat horizons (39–47%; 530 y BP) and near-surface permafrost (12–19%; 5490 y BP). DOC also accounts for approximately half of fish isotopic composition. Analyses suggest that as the contribution of old C to fish increases, fish growth and nutritional status decline. We anticipate increases in old DOC delivery to streams under projected warming, which may further alter food web function in Arctic watersheds.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου