CEDRA: A Tool to Help Consumers Assess Risk for Ear Disease This article introduces the Consumer Ear Disease Risk Assessment (CEDRA) tool. CEDRA is a brief questionnaire designed to screen for targeted ear diseases. It offers an opportunity for consumers to self-screen for disease before seeking a hearing device and may be used by clinicians to help their patients decide the appropriate path to follow in hearing healthcare. Here we provide highlights of previously published validation in the context of a more thorough description of CEDRA’s development and implementation. CEDRA’s sensitivity and specificity, using a cut-off score of 4 or higher, was 90% and 72%, respectively, relative to neurotologist diagnoses in the initial training sample used to create the scoring algorithm (n = 246). On a smaller independent test sample (n = 61), CEDRA’s sensitivity and specificity were 76% and 80%, respectively. CEDRA has readability levels similar to many other patient-oriented questionnaires in hearing healthcare, and informal reports from pilot CEDRA-providers indicate that the majority of patients can complete it in less than 10 min. As the hearing healthcare landscape changes and provider intercession is no longer mandated, CEDRA provides a measure of safety without creating a barrier to access. |
Reliability of Measures Intended to Assess Threshold-Independent Hearing Disorders Objectives: Recent animal studies have shown that noise exposure can cause cochlear synaptopathy without permanent threshold shift. Because the noise exposure preferentially damaged auditory nerve fibers that processed suprathreshold sounds (low-spontaneous rate fibers), it has been suggested that synaptopathy may underlie suprathreshold hearing deficits in humans. Recently, several researchers have suggested measures to identify the pathology or pathologies underlying suprathreshold hearing deficits in humans based on results from animal studies; however, the reliability of some of these measures have not been assessed. The purpose of this study was to assess the test–retest reliability of measures that may have the potential to relate suprathreshold hearing deficits to site(s)-of-lesion along the peripheral auditory system in humans. Design: Adults with audiometric normal hearing were tested on a battery of behavioral and physiologic measures that included (1) thresholds in quiet (TIQ), (2) thresholds in noise (TIN), (3) frequency-modulation detection threshold (FMDT), (4) word recognition in four listening conditions, (5) distortion-product otoacoustic emissions (DPOAE), (6) middle ear muscle reflex (MEMR), (7) tone burst-elicited auditory brainstem response (tbABR), and (8) speech-evoked ABR (sABR). Data collection for each measure was repeated over two visits separated by at least one week. The residuals of the correlation between the suprathreshold measures and TIQ serve as functional and quantitative proxies for threshold-independent hearing disorders because they represent the portion of the raw measures that is not dependent on TIQ. Reliability of the residual measures was assessed using intraclass correlation (ICC). Results: Reliability for the residual measures was good (ICC ≥ 0.75) for FMDT, DPOAEs, and MEMR. Residual measures showing moderate reliability (0.5 ≤ ICC < 0.75) were tbABR wave I amplitude, TIN, and word recognition in quiet, noise, and time-compressed speech with reverberation. Wave V of the tbABR, waves of the sABR, and recognition of time-compressed words had poor test–retest reliability (ICC < 0.5). Conclusions: Reliability of residual measures was mixed, suggesting that care should be taken when selecting measures for diagnostic tests of threshold-independent hearing disorders. Quantifying hidden hearing loss as the variance in suprathreshold measures of auditory function that is not due to TIQ may provide a reliable estimate of threshold-independent hearing disorders in humans. |
Understanding Variability in Individual Response to Hearing Aid Signal Processing in Wearable Hearing Aids Objectives: Previous work has suggested that individual characteristics, including amount of hearing loss, age, and working memory ability, may affect response to hearing aid signal processing. The present study aims to extend work using metrics to quantify cumulative signal modifications under simulated conditions to real hearing aids worn in everyday listening environments. Specifically, the goal was to determine whether individual factors such as working memory, age, and degree of hearing loss play a role in explaining how listeners respond to signal modifications caused by signal processing in real hearing aids, worn in the listener’s everyday environment, over a period of time. Design: Participants were older adults (age range 54–90 years) with symmetrical mild-to-moderate sensorineural hearing loss. We contrasted two distinct hearing aid fittings: one designated as mild signal processing and one as strong signal processing. Forty-nine older adults were enrolled in the study and 35 participants had valid outcome data for both hearing aid fittings. The difference between the two settings related to the wide dynamic range compression and frequency compression features. Order of fittings was randomly assigned for each participant. Each fitting was worn in the listener’s everyday environments for approximately 5 weeks before outcome measurements. The trial was double blind, with neither the participant nor the tester aware of the specific fitting at the time of the outcome testing. Baseline measures included a full audiometric evaluation as well as working memory and spectral and temporal resolution. The outcome was aided speech recognition in noise. Results: The two hearing aid fittings resulted in different amounts of signal modification, with significantly less modification for the mild signal processing fitting. The effect of signal processing on speech intelligibility depended on an individual’s age, working memory capacity, and degree of hearing loss. Speech recognition with the strong signal processing decreased with increasing age. Working memory interacted with signal processing, with individuals with lower working memory demonstrating low speech intelligibility in noise with both processing conditions, and individuals with higher working memory demonstrating better speech intelligibility in noise with the mild signal processing fitting. Amount of hearing loss interacted with signal processing, but the effects were small. Individual spectral and temporal resolution did not contribute significantly to the variance in the speech intelligibility score. Conclusions: When the consequences of a specific set of hearing aid signal processing characteristics were quantified in terms of overall signal modification, there was a relationship between participant characteristics and recognition of speech at different levels of signal modification. Because the hearing aid fittings used were constrained to specific fitting parameters that represent the extremes of the signal modification that might occur in clinical fittings, future work should focus on similar relationships with more diverse types of signal processing parameters. |
Mechanisms of Localization and Speech Perception with Colocated and Spatially Separated Noise and Speech Maskers Under Single-Sided Deafness with a Cochlear Implant Objectives: This study tested listeners with a cochlear implant (CI) in one ear and acoustic hearing in the other ear, to assess their ability to localize sound and to understand speech in collocated or spatially separated noise or speech maskers. Design: Eight CI listeners with contralateral acoustic hearing ranging from normal hearing to moderate sensorineural hearing loss were tested. Localization accuracy was measured in five of the listeners using stimuli that emphasized the separate contributions of interaural level differences (ILDs) and interaural time differences (ITD) in the temporal envelope and/or fine structure. Sentence recognition was tested in all eight CI listeners, using collocated and spatially separated speech-shaped Gaussian noise and two-talker babble. Performance was compared with that of age-matched normal-hearing listeners via loudspeakers or via headphones with vocoder simulations of CI processing. Results: Localization improved with the CI but only when high-frequency ILDs were available. Listeners experienced no additional benefit via ITDs in the stimulus envelope or fine structure using real or vocoder-simulated CIs. Speech recognition in two-talker babble improved with a CI in seven of the eight listeners when the target was located at the front and the babble was presented on the side of the acoustic-hearing ear, but otherwise showed little or no benefit of a CI. Conclusion: Sound localization can be improved with a CI in cases of significant residual hearing in the contralateral ear, but only for sounds with high-frequency content, and only based on ILDs. In speech understanding, the CI contributed most when it was in the ear with the better signal to noise ratio with a speech masker. |
Bone Conduction Amplification in Children: Stimulation via a Percutaneous Abutment versus a Transcutaneous Softband Objectives: Research suggests that the speech perception of children using bone conduction amplification improves if the device is coupled to an implanted abutment rather than to a softband. The purpose of the present study was to determine if the benefit of direct stimulation via an abutment is limited to small improvements in speech perception or if similar or greater benefits occur for other auditory tasks important for learning and communication. Design: Fourteen children (7 to 15 years of age) with bilateral conductive and three children with unilateral conductive or sensorineural hearing loss were enrolled. Each child completed four tasks while using a bone conduction device coupled to an implanted abutment and with the device coupled to a softband. The two devices were worn at the same time and activated one at a time for testing. The children completed four tasks under each coupling condition: (a) a traditional word recognition task, (b) an auditory lexical decision task in which the children repeated aloud, and indicated the category of, real and nonsense words, (c) a nonsense-word detection task which required the children to identify nonsense words within short sentences, and (d) a rapid word learning task in which the children learned to associate nonsense words with novel images. Results: Regression analyses revealed that age, duration of device use, in-situ hearing thresholds, or device output did not account for a significant portion of the variability in performance for any of the four tasks. Repeated-measures analysis of variance revealed significant increases in word recognition with the abutment as well as significantly better performance for the lexical decision and word learning tasks. The data indicated that the children with the poorest performance with the softband tended to benefit most with the abutment. Also, the younger children showed improved performance for more tasks with the abutment than the older children. No difference between coupling conditions was observed for nonsense-word detection. Conclusions: The improved recognition of familiar words, categorization and repetition of nonsense words, and speed of word learning with the abutment suggests that direct stimulation provides a higher-quality signal than indirect stimulation through a softband. Because these processes are important for vocabulary acquisition and language development, children may experience long-term benefits of direct stimulation for academic, social, and vocational purposes in addition to immediate improvement in communication. |
Factors Affecting Bimodal Benefit in Pediatric Mandarin-Speaking Chinese Cochlear Implant Users Objectives: While fundamental frequency (F0) cues are important to both lexical tone perception and multitalker segregation, F0 cues are poorly perceived by cochlear implant (CI) users. Adding low-frequency acoustic hearing via a hearing aid in the contralateral ear may improve CI users’ F0 perception. For English-speaking CI users, contralateral acoustic hearing has been shown to improve perception of target speech in noise and in competing talkers. For tonal languages such as Mandarin Chinese, F0 information is lexically meaningful. Given competing F0 information from multiple talkers and lexical tones, contralateral acoustic hearing may be especially beneficial for Mandarin-speaking CI users’ perception of competing speech. Design: Bimodal benefit (CI+hearing aid – CI-only) was evaluated in 11 pediatric Mandarin-speaking Chinese CI users. In experiment 1, speech recognition thresholds (SRTs) were adaptively measured using a modified coordinated response measure test; subjects were required to correctly identify 2 keywords from among 10 choices in each category. SRTs were measured with CI-only or bimodal listening in the presence of steady state noise (SSN) or competing speech with the same (M+M) or different voice gender (M+F). Unaided thresholds in the non-CI ear and demographic factors were compared with speech performance. In experiment 2, SRTs were adaptively measured in SSN for recognition of 5 keywords, a more difficult listening task than the 2-keyword recognition task in experiment 1. Results: In experiment 1, SRTs were significantly lower for SSN than for competing speech in both the CI-only and bimodal listening conditions. There was no significant difference between CI-only and bimodal listening for SSN and M+F (p > 0.05); SRTs were significantly lower for CI-only than for bimodal listening for M+M (p < 0.05), suggesting bimodal interference. Subjects were able to make use of voice gender differences for bimodal listening (p < 0.05) but not for CI-only listening (p > 0.05). Unaided thresholds in the non-CI ear were positively correlated with bimodal SRTs for M+M (p < 0.006) but not for SSN or M+F. No significant correlations were observed between any demographic variables and SRTs (p > 0.05 in all cases). In experiment 2, SRTs were significantly lower with two than with five keywords (p < 0.05). A significant bimodal benefit was observed only for the 5-keyword condition (p < 0.05). Conclusions: With the CI alone, subjects experienced greater interference with competing speech than with SSN and were unable to use voice gender difference to segregate talkers. For the coordinated response measure task, subjects experienced no bimodal benefit and even bimodal interference when competing talkers were the same voice gender. A bimodal benefit in SSN was observed for the five-keyword condition but not for the two-keyword condition, suggesting that bimodal listening may be more beneficial as the difficulty of the listening task increased. The present data suggest that bimodal benefit may depend on the type of masker and/or the difficulty of the listening task. |
Age-Related Changes in Temporal Resolution Revisited: Electrophysiological and Behavioral Findings From Cochlear Implant Users Objectives: The mechanisms underlying age-related changes in speech perception are still unclear, most likely multifactorial and often can be difficult to parse out from the effects of hearing loss. Age-related changes in temporal resolution (i.e., the ability to track rapid changes in sounds) have long been associated with speech perception declines exhibited by many older individuals. The goals of this study were as follows: (1) to assess age-related changes in temporal resolution in cochlear implant (CI) users, and (2) to examine the impact of changes in temporal resolution and cognition on the perception of speech in noise. In this population, it is possible to bypass the cochlea and stimulate the auditory nerve directly in a noninvasive way. Additionally, CI technology allows for manipulation of the temporal properties of a signal without changing its spectrum. Design: Twenty postlingually deafened Nucleus CI users took part in this study. They were divided into groups of younger (18 to 40 years) and older (68 to 82 years) participants. A cross-sectional study design was used. The speech processor was bypassed and a mid-array electrode was used for stimulation. We compared peripheral and central physiologic measures of temporal resolution with perceptual measures obtained using similar stimuli. Peripherally, temporal resolution was assessed with measures of the rate of recovery of the electrically evoked compound action potential (ECAP), evoked using a single pulse and a pulse train as maskers. The acoustic change complex (ACC) to gaps in pulse trains was used to assess temporal resolution more centrally. Psychophysical gap detection thresholds were also obtained. Cognitive assessment included two tests of processing speed (Symbol Search and Coding) and one test of working memory (Digit Span Test). Speech perception was tested in the presence of background noise (QuickSIN test). A correlational design was used to explore the relationship between temporal resolution, cognition, and speech perception. Results: The only metric that showed significant age effects in temporal processing was the ECAP recovery function recorded using pulse train maskers. Younger participants were found to have faster rates of neural recovery following presentation of pulse trains than older participants. Age was not found to have a significant effect on speech perception. When results from both groups were combined, digit span was the only measure significantly correlated with speech perception performance. Conclusions: In this sample of CI users, few effects of advancing age on temporal resolution were evident. While this finding would be consistent with a general lack of aging effects on temporal resolution, it is also possible that aging effects are influenced by processing peripheral to the auditory nerve, which is bypassed by the CI. However, it is known that cross-fiber neural synchrony is improved with electrical (as opposed to acoustic) stimulation. This change in neural synchrony may, in turn, make temporal cues more robust/perceptible to all CI users. Future studies involving larger sample sizes should be conducted to confirm these findings. Results of this study also add to the growing body of literature that suggests that working memory is important for the perception of degraded speech. |
Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits Objective: The stimuli used to evoke otoacoustic emissions (OAEs) are typically calibrated based on the total SPL measured at the probe microphone. However, due to the acoustics of the ear-canal space (i.e., standing-wave interference), this method can underestimate the stimulus pressure reaching the tympanic membrane at certain frequencies. To mitigate this effect, stimulus calibrations based on forward pressure level (FPL) can be applied. Furthermore, the influence of ear-canal acoustics on measured OAE levels can be compensated by expressing them in emitted pressure level (EPL). To date, studies have used artificial shallow versus deep probe fits to assess the effects of calibration method on changes in probe insertion. In an attempt to better simulate a clinical setting, the combined effects of FPL calibration of stimulus level and EPL compensation of OAE level on response variability during routine (noncontrived) probe fittings were examined. Design: The distortion component of the distortion-product OAE (DPOAE) and the stimulus-frequency OAE (SFOAE) were recorded at low and moderate stimulus levels in 20 normal-hearing young-adult subjects across a five-octave range. In each subject, three different calibration approaches were compared: (1) the conventional SPL-based stimulus calibration with OAE levels expressed in SPL; (2) FPL stimulus calibration with OAEs expressed in SPL; and (3) FPL stimulus calibration with OAEs expressed in EPL. Test and retest measurements were obtained during the same session and, in a subset of subjects, several months after the initial test. The effects of these different procedures on the inter- and intra-subject variability of OAE levels were assessed across frequency and level. Results: There were no significant differences in the inter-subject variability of OAE levels across the three calibration approaches. However, there was a significant effect on OAE intra-subject variability. The FPL/EPL approach resulted in the overall lowest test-rest differences in DPOAE level for frequencies above 4 kHz, where standing-wave interference is strongest. The benefit was modest, ranging on average from 0.5 to 2 dB and was strongest at the lower stimulus level. SFOAE level variability did not show significant differences among the three procedures, perhaps due to insufficient signal-to-noise ratio and nonoptimized stimulus levels. Correlations were found between the short-term replicability of DPOAEs and the benefit derived from the FPL/EPL procedure: the more variable the DPOAE, the stronger the benefit conferred by the advanced calibration methods. Conclusions: Stimulus and response calibration procedures designed to mitigate the effects of standing-wave interference on both the stimulus and the OAE enhance the repeatability of OAE measurements and reduce their dependence on probe position, even when probe shifts are small. Modest but significant improvements in short-term test-retest repeatability were observed in the mid- to high-frequency region when using combined FPL/EPL procedures. The authors posit that the benefit will be greater in a more heterogeneous group of subjects and when different testers participate in the fitting and refitting of subjects, which is a common practice in the audiology clinic. The impact of calibration approach on OAE inter-subject variability was not significant, possibly due to a homogeneous subject population and because factors other than probe position are at play. |
Childhood Sensorineural Hearing Loss and Educational Attainment in Adulthood: Results From the HUNT Study Objectives: Although the educational achievement gap between people without hearing loss and people with hearing loss is well-documented, few studies are based on large, nonclinical samples. The present study aims to investigate the educational attainment among Norwegian adults diagnosed with sensorineural hearing loss as children, compared with a matched control group of people without hearing loss. Design: A prospective cohort design was applied. Between 1954 and 1986, the children in the first, fourth, and/or seventh grade in all primary schools in Nord-Trøndelag County participated in the School Hearing Investigation in Nord-Trøndelag, in which they underwent audiometric screening. Those with positive results had their hearing further tested by means of pure tone audiometry at 0.25, 0.5, 1, 2, 4, and 8 kHz with air- and bone-conduction thresholds, as well as a full examination by an ear, nose, and throat (ENT) specialist. In the present study, 216 persons were classified with moderate-severe hearing loss (41 to 100 dB HL), 293 with mild hearing loss (26 to 40 dB HL), and 240 with slight hearing loss (16 to 25 dB HL). Age-matched controls were recruited from the Norwegian Health Study, which was conducted in the same county. A total of 48,606 people participated in the present study. Data on educational attainment up to 2014 was provided by Statistics Norway. Control variables comprised sex, age, mothers’, and fathers’ education. The relation between childhood sensorineural hearing loss and educational attainment was tested by means of multinomial logistic regression models; first for the total sample (born between 1941 and 1979), and then for two different birth cohorts born between 1941 and 1959 and between 1960 and 1979. Results: Percentwise, the educational attainment level in general has increased, both among people without hearing loss and people with hearing loss, and especially for women. However, 27.5% of people without hearing loss obtained higher education, whereas the corresponding numbers for those with mild or moderate-severe hearing loss were 18.8%, and 21.3%, respectively. The results from the regression analyses showed that in the total sample, compared with having primary education, people with moderate-severe or mild hearing loss were about half as likely to achieve higher education as people without hearing loss (odds ratio (OR) = 0.63 and 0.49, respectively). An interaction term between sensorineural hearing loss and sex was specified but it was not significant. In the older cohort, we found a significant association between mild hearing loss and higher education (OR = 0.40), and between moderate-severe hearing loss and secondary education (OR = 0.65). In the younger cohort, there was a significant association between mild hearing loss and higher education (OR = 0.56) and between slight hearing loss and secondary education (OR = 0.61). Conclusions: The results from this study indicate that the achievement gap between people without hearing loss and those with hearing loss remains. Future studies should try to pinpoint what might be hindering people with slight, mild, moderate, or severe hearing loss in pursuing higher education. Parents, health personnel, institutions for higher education, and policy makers alike should take this into consideration when making plans and policies. |
Effect of Compression on Musical Sound Quality in Cochlear Implant Users Objectives: Cochlear implant (CI) users frequently report poor sound quality while listening to music, although the specific parameters responsible for this loss of sound quality remain poorly understood. Audio compression, which reduces the dynamic range (DR) for a given sound, is a ubiquitous component of signal processing used by both CI and hearing aid technology. However, the relative impact of compression for acoustic and electric hearing on music perception has not been well studied, an important consideration especially given that most compression algorithms in CIs were developed to optimize speech perception. The authors hypothesized that normal-hearing (NH) listeners would detect increased levels of compression more easily than CI users, but that both groups would perceive a loss of sound quality with increasing compression levels. Design: The present study utilizes the Cochlear Implant-MUltiple Stimulus with Hidden Reference and Anchor to evaluate the listener sensitivity to increasing levels of compression applied to music stimuli. The Cochlear Implant-MUltiple Stimulus with Hidden Reference and Anchor is a tool used to assess relative changes in the perceived sound quality of music across increasingly degraded listening conditions, in both CI and NH subjects. In this study, the authors applied multiple iterations of an aggressive compression algorithm to the music clips using Adobe Audition. The test conditions included 1, 3, 5, and 20 iterations sound tokens, with the 20-iteration samples serving as the Anchor stimuli. The compressed excerpts were 5 sec in length, with five clips for each of the five common musical genres (i.e., Classical, Jazz, Country, Rock, and Hip-Hop). Subjects were also presented with a Reference excerpt, which was the original music clip without any additional compression applied. CI recipients (n = 7, 11 ears) and NH listeners (n = 10) were asked to rate the sound quality of additionally compressed music as compared to the Reference. Results: Although both NH and CI groups could detect sound quality differences as a function of compression level, the discriminatory ability of the CI group was blunted compared to the NH group. The CI group had less variability in their responses and overall demonstrated reduced sensitivity to deterioration caused by excessive levels of compression. On average, the CI group rated the Anchor condition as only “Slightly worse” than the Reference. The music clips that were most affected by the compression were from Jazz and Hip-Hop genres and less so for Rock and Country clips. Corollary to this was a small but statistically significant impact of DR of the music clips on sound quality ratings, with narrower DR showing an association with poorer ratings. Conclusions: These results indicate that CI users exhibit less sensitivity to sound quality changes in music attributable to high levels of compression. These findings may account for another contributing factor to the generally poor music perception observed in CI users, particularly when listening to commercially recorded music. |
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Τετάρτη 6 Νοεμβρίου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
10:09 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis,
Telephone consultation 11855 int 1193
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου