Κυριακή 24 Νοεμβρίου 2019

The potassium channel Kcne3 is a VEGFA-inducible gene selectively expressed by vascular endothelial tip cells

Abstract

Angiogenesis is largely driven by motile endothelial tip-cells capable of invading avascular tissue domains and enabling new vessel formation. Highly responsive to Vascular Endothelial Growth-Factor-A (VEGFA), endothelial tip-cells also suppress angiogenic sprouting in adjacent stalk cells, and thus have been a primary therapeutic focus in addressing neovascular pathologies. Surprisingly, however, there remains a paucity of specific endothelial tip-cell markers. Here, we employ transcriptional profiling and a lacZ reporter allele to identify Kcne3 as an early and selective endothelial tip-cell marker in multiple angiogenic contexts. In development, Kcne3 expression initiates during early phases of angiogenesis (E9) and remains specific to endothelial tip-cells, often adjacent to regions expressing VEGFA. Consistently, Kcne3 activation is highly responsive to exogenous VEGFA but maintains tip-cell specificity throughout normal retinal angiogenesis. We also demonstrate endothelial tip-cell selectivity of Kcne3 in several injury and tumor models. Together, our data show that Kcne3 is a unique marker of sprouting angiogenic tip-cells and offers new opportunities for investigating and targeting this cell type.

Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread

Abstract

Intravascular dissemination of tumor cells is the accepted mechanism of cancer metastasis. However, the phenomenon of angiotropism, pericyte mimicry (PM), and extravascular migratory metastasis (EVMM) has questioned the concept that tumor cells metastasize exclusively via circulation within vascular channels. This new paradigm of cancer spread and metastasis suggests that metastatic cells employ embryonic mechanisms for attachment to the abluminal surfaces of blood vessels (angiotropism) and spread via continuous migration, competing with and replacing pericytes, i.e., pericyte mimicry (PM). This is an entirely extravascular phenomenon (i.e., extravascular migratory metastasis or EVMM) without entry (intravasation) into vascular channels. PM and EVMM have mainly been studied in melanoma but also occur in other cancer types. PM and EVMM appear to be a reversion to an embryogenesis-derived program. There are many analogies between embryogenesis and cancer progression, including the important role of laminins, epithelial–mesenchymal transition, and the re-activation of embryonic signals by cancer cells. Furthermore, there is no circulation of blood during the first trimester of embryogenesis, despite the fact that there is extensive migration of cells to distant sites and formation of organs and tissues during this period. Embryonic migration therefore is a continuous extravascular migration as are PM and EVMM, supporting the concept that these embryonic migratory events appear to recur abnormally during the metastatic process. Finally, the perivascular location of tumor cells intrinsically links PM to vascular co-option. Taken together, these two new paradigms may greatly influence the development of new effective therapeutics for metastasis. In particular, targeting embryonic factors linked to migration that are detected during cancer metastasis may be particularly relevant to PM/EVMM.

Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies

Abstract

A branched vascular network is crucial to placental development and is dependent on factors such as vascular endothelial growth factor (VEGF), placental growth factor (PlGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng) to regulate blood vessel growth. Imbalances in these factors can lead to aberrant placental vascular development. Throughout pregnancy, these factors are also released into the maternal circulation to aid in adapting the maternal cardiovascular system to pregnancy. Increased secretion of anti-angiogenic factors can lead to the development of an anti-angiogenic state in the mother and contribute to the development of pregnancy pathologies such as pre-eclampsia and foetal growth restriction (FGR). Thus, what are commonly referred to as ‘angiogenic factors’ have distinct functions in the maternal and placental circulations making this a misnomer. Indeed, technical issues in this field such as assay methodology and lack of data considering different placental cell types mean that the physiological roles of these factors in the maternal and placental circulations are frequently muddled in the literature. This review aims to (1) unpick the distinct roles of factors that influence placental vascular development and separate these from the roles of the same factors within the maternal circulation in normal pregnancy and (2) critically assess how imbalances may contribute to the distinct pathophysiological mechanisms underlying pregnancy disorders. Together, this critical assessment of the field endeavours to improve our ability to accurately use these factors as predictive/diagnostic biomarkers in the future.

Vascular co-option in brain metastasis

Abstract

Vascular co-option by brain metastasis-initiating cells has been demonstrated as a critical step in organ colonization. The physical interaction between the cancer cell and the endothelial cell is mediated by integrins and L1CAM and could be involved in aggressive growth but also latency and immune evasion. The key involvement of vascular co-option in brain metastasis has created an emerging field that aims to identify critical targets as well as effective inhibitors with the goal of preventing brain metastases.

Vessel co-option in glioblastoma: emerging insights and opportunities

Abstract

Vessel co-option is the movement of cancer cells towards and along the pre-existing vasculature and is an alternative to angiogenesis to gain access to nutrients. Vessel co-option has been shown as a strategy employed by some glioblastoma (GBM) cells to invade further into the brain, leading to one of the greatest challenges in treating GBM. In GBM, vessel co-option may be an intrinsic feature or an acquired mechanism of resistance to anti-angiogenic treatment. Here, we describe the histological features and the dynamics visualized through intravital microscopy of vessel co-option in GBM, as well as the molecular players discovered until now. We also highlight key unanswered questions, as answering these is critical to improve understanding of GBM progression and for developing more effective approaches for GBM treatment.

Oxygen sensing decoded: a Nobel concept in biology

Abstract

Oxygen is essential to most organisms as it is a necessity for aerobic metabolism and energy production. Too much or too little oxygen can be deadly, such that mechanisms for fast and titrated response to changing oxygen levels are crucial. These mechanisms have evolved from the studies of Gregg L. Semenza, William G. Kaelin and Peter J. Ratcliffe. It is through the work of their three laboratories, performed in the 1990s, that the cellular oxygen sensing mechanisms have been decoded. Their discoveries have had major impact for innovation in medicine, especially in the field of angiogenesis research, where oxygen sensing and its consequences have led to enhanced insight in vascular development and strategies for combating angiogenic diseases. On October 7, the Nobel Assembly in Stockholm announced at the Karolinska Institute that the Nobel Prize for Medicine 2019 is jointly awarded to these three scientists for their seminal discoveries on how cells sense and respond to oxygen.

Successful therapy with bevacizumab combined with corticosteroids for crizotinib-induced interstitial lung disease

Abstract

We present the case of an old woman with ALK-rearranged stage IV lung adenocarcinoma who received crizotinib. She presented with severe dyspnea on the 34th day, and diffuse ground-glass opacifications in her chest. A diagnosis of crizotinib-induced ILD was confirmed. Corticosteroids were administered. However, the disease was still progressing rapidly. Therefore, as a monoclonal antibody against vascular endothelial growth factor, bevacizumab was administered in low doses (200 mg on days one and three). Her symptoms began to improve. Our clinical experience indicates that bevacizumab combined with corticosteroids might be a promising treatment in crizotinib-induced ILD patients.

The tumor vasculature an attractive CAR T cell target in solid tumors

Abstract

T cells armed with a chimeric antigen receptor, CAR T cells, have shown extraordinary activity against certain B lymphocyte malignancies, when targeted towards the CD19 B cell surface marker. These results have led to the regulatory approval of two CAR T cell approaches. Translation of this result to the solid tumor setting has been problematic until now. A number of differences between liquid and solid tumors are likely to cause this discrepancy. The main ones of these are undoubtedly the uncomplicated availability of the target cell within the blood compartment and the abundant expression of the target molecule on the cancerous cells in the case of hematological malignancies. Targets expressed by solid tumor cells are hard to engage due to the non-adhesive and abnormal vasculature, while conditions in the tumor microenvironment can be extremely immunosuppressive. Targets in the tumor vasculature are readily reachable by CAR T cells and reside outside the immunosuppressive tumor microenvironment. It is therefore hypothesized that targeting CAR T cells towards the tumor vasculature of solid tumors may share the excellent effects of CAR T cell therapy with that against hematological malignancies. A few reports have shown promising results. Suggestions are provided for further improvement.

Highlights of the 13th International Hereditary Hemorrhagic Telangiectasia Scientific conference

The role of receptor MAS in microglia-driven retinal vascular development

Abstract

Objective

The receptor MAS, encoded by Mas1, is expressed in microglia and its activation has been linked to anti-inflammatory actions. However, microglia are involved in several different processes in the central nervous system, including the promotion of angiogenesis. We therefore hypothesized that the receptor MAS also plays a role in angiogenesis via microglia.

Approach and results

To assess the role of MAS on vascular network development, flat-mounted retinas from 3-day-old wild-type (WT) and Mas1−/− mice were subjected to Isolectin B4 staining. The progression of the vascular front was reduced (− 24%, p < 0.0001) and vascular density decreased (− 38%, p < 0.001) in Mas1−/− compared to WT mice with no change in the junction density. The number of filopodia and filopodia bursts were decreased in Mas1−/− mice at the vascular front (− 21%, p < 0.05; − 29%, p < 0.0001, respectively). This was associated with a decreased number of vascular loops and decreased microglial density at the vascular front in Mas1−/− mice (-32%, p < 0.001; − 26%, p < 0.05, respectively). As the front of the developing vasculature is characterized by reduced oxygen levels, we determined the expression of Mas1 following hypoxia in primary microglia from 3-day-old WT mice. Hypoxia induced a 14-fold increase of Mas1 mRNA expression (p < 0.01). Moreover, stimulation of primary microglia with a MAS agonist induced expression of Notch1 (+ 57%, p < 0.05), Dll4 (+ 220%, p  < 0.001) and Jag1 (+ 137%, p < 0.001), genes previously described to mediate microglia/endothelial cell interaction during angiogenesis.

Conclusions

Our study demonstrates that the activation of MAS is important for microglia recruitment and vascular growth in the developing retina.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου