Transethnic associations among immune-mediated diseases and single-nucleotide polymorphisms of the aryl hydrocarbon response gene ARNT and the PTPN22 immune regulatory gene Publication date: Available online 21 November 2019 Source: Journal of Autoimmunity Author(s): Shepherd H. Schurman, Terrance P. O'Hanlon, John A. McGrath, Artiom Gruzdev, Arsun Bektas, Hong Xu, Stavros Garantziotis, Darryl C. Zeldin, Frederick W. Miller AbstractBackgroundBecause immune responses are sensitive to environmental changes that drive selection of genetic variants, we hypothesized that polymorphisms of some xenobiotic response and immune response genes may be associated with specific types of immune-mediated diseases (IMD), while others may be associated with IMD as a larger category regardless of specific phenotype or ethnicity.ObjectiveTo examine transethnic gene-IMD associations for single nucleotide polymorphism (SNP) frequencies of prototypic xenobiotic response genes—aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), AHR repressor (AHRR) — and a prototypic immune response gene, protein tyrosine phosphatase, non-receptor type 22 (PTPN22), in subjects from the Environmental Polymorphisms Registry (EPR).MethodsSubjects (n = 3731) were genotyped for 14 SNPs associated with functional variants of the AHR, ARNT, AHRR, and PTPN22 genes, and their frequencies were compared among African Americans (n = 1562), Caucasians (n = 1838), and Hispanics (n = 331) with previously reported data. Of those genotyped, 2015 EPR subjects completed a Health and Exposure survey. SNPs were assessed via PLINK for associations with IMD, which included those with autoimmune diseases, allergic disorders, asthma, or idiopathic pulmonary fibrosis. Transethnic meta-analyses were performed using METAL and MANTRA approaches.ResultsARNT SNP rs11204735 was significantly associated with autoimmune disease by transethnic meta-analyses using METAL (odds ratio, OR [95% confidence interval] = 1.29 [1.08–1.55]) and MANTRA (ORs ranged from 1.29 to 1.30), whereas ARNT SNP rs1889740 showed a significant association with autoimmune disease by METAL (OR = 1.25 [1.06–1.47]). For Caucasian females, PTPN22 SNP rs2476601 was significantly associated with autoimmune disease by allelic association tests (OR = 1.99, [1.30–3.04]). In Caucasians and Caucasian males, PTPN22 SNP rs3811021 was significantly associated with IMD (OR = 1.39 [1.12–1.72] and 1.50 [1.12–2.02], respectively) and allergic disease (OR = 1.39 [1.12–1.71], and 1.62 [1.19–2.20], respectively). In the transethnic meta-analysis, PTPN22 SNP rs3811021 was significantly implicated in IMD by METAL (OR = 1.31 [1.10–1.56]), and both METAL and MANTRA suggested that rs3811021 was associated with IMD and allergic disease in males across all three ethnic groups (IMD METAL OR = 1.50 [1.15–1.95]; IMD MANTRA ORs ranged from 1.47 to 1.50; allergic disease METAL OR = 1.58 [1.20–2.08]; allergic disease MANTRA ORs ranged from 1.55 to 1.59).ConclusionsSome xenobiotic and immune response gene polymorphisms were shown here, for the first time, to have associations across a broad spectrum of IMD and ethnicities. Our findings also suggest a role for ARNT in the development of autoimmune diseases, implicating environmental factors metabolized by this pathway in pathogenesis. Further studies are needed to confirm these data, assess the implications of these findings, define gene-environment interactions, and explore the mechanisms leading to these increasingly prevalent disorders. |
LncRNA PVT1 links Myc to glycolytic metabolism upon CD4+ T cell activation and Sjögren's syndrome-like autoimmune response Publication date: Available online 19 November 2019 Source: Journal of Autoimmunity Author(s): Jiayao Fu, Huan Shi, Baoli Wang, Tianle Zhan, Yanxiong Shao, Lei Ye, Shufeng Wu, Chuangqi Yu, Lingyan Zheng Abstract
The hyperproliferation and hyperactivation of CD4+ T cells in salivary gland tissue is a hallmark of Sjögren's syndrome (SS). However, the role of long noncoding RNAs (lncRNAs) in the pathological process of SS and CD4+ T cell activation has not been fully elucidated. Here, we reported that lncRNA PVT1 was involved in the glycolytic metabolism reprogramming and proliferation upon CD4+ T cell activation. Expression of PVT1 was positively related with CD4+ T cell activation both in SS patients and Ex vivo antigen simulation. Depletion of PVT1 decreased the proliferation of murine CD4+ T cells and Jurkat T cells upon activation. We also showed that expression of the transcription factor Myc is regulated by PVT1 under antigen simulation. Depletion of PVT1 significantly decreased the expression of glycolytic genes, as well as several pivotal glycolytic proteins that were directly transcribed by Myc. Measurement of glucose content and lactate secretion indicated a defected lactate secretion and glucose uptake in PVT1-depleted T cells. Additionally, the real-time extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) measurement also affirmed that PVT1 maintains glycolytic levels, glycolytic capacity under stress and ECAR/OCR ratios during T cell activation. Polarizing assays indicate that PVT1 depletion defected the function of Th1 effector cells as well as down-regulated Myc expression and glycolytic levels. Furthermore, we observed increased glycolytic levels in CD4+ T cells from SS-like NOD/Ltj mice. Treatment with 2-deoxy-d-glucose (2-DG), an inhibitor of glycolysis, significantly decreased the extent of lymphocyte infiltration and CD4+ T cell numbers and attenuated the defect of salivary flow in the lesioned submandibular glands of NOD/Ltj mice. Thus, our study demonstrated that lncRNA PVT1, which was upregulated in the CD4+T cells of SS patients, could maintain the expression of Myc, thus controlling the proliferation and effector functions of CD4+ T cells through regulating the reprogramming of glycolysis. Inhibition of glycolysis could attenuate the proliferation of CD4+ T cells and the SS-like autoimmune response. Our study provides a novel mechanistic function of lncRNA PVT1 in the pathogenesis of SS.
Graphical abstract |
In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation Publication date: Available online 12 November 2019 Source: Journal of Autoimmunity Author(s): Izabella A. Andrianova, Anastasiya A. Ponomareva, Elmira R. Mordakhanova, Giang Le Minh, Amina G. Daminova, Tatiana A. Nevzorova, Lubica Rauova, Rustem I. Litvinov, John W. Weisel Abstract
Systemic lupus erythematosus (SLE) is associated with a high risk of venous and arterial thrombosis, not necessarily associated with prothrombotic antiphospholipid antibodies (Abs). Alternatively, thrombosis may be due to an increased titer of anti-dsDNA Abs that presumably promote thrombosis via direct platelet activation. Here, we investigated effects of purified anti-dsDNA Abs from the blood of SLE patients, alone or in a complex with dsDNA, on isolated normal human platelets. We showed that anti-dsDNA Abs and anti-dsDNA Ab/dsDNA complexes induced strong platelet activation assessed by enhanced P-selectin expression and dramatic morphological and ultrastructural changes. Electron microscopy revealed a significantly higher percentage of platelets that lost their discoid shape, formed multiple filopodia and had a shrunken body when treated with anti-dsDNA Abs or anti-dsDNA Ab/dsDNA complexes compared with control samples. In addition, these platelets activated with anti-dsDNA Ab/dsDNA complexes typically contained a reduced number of secretory α-granules that grouped in the middle and often merged into a solid electron dense area. Many activated platelets released plasma membrane-derived microvesicles and/or fell apart into subcellular cytoplasmic fragments. Confocal microscopy revealed that platelets treated with anti-dsDNA Ab/dsDNA complex had a heterogeneous distribution of septin2 compared with the homogeneous distribution in control platelets. Structural perturbations were concomitant with mitochondrial depolarization and a decreased content of platelet ATP, indicating energetic exhaustion. Most of the biochemical and morphological changes in platelets induced by anti-dsDNA Abs and anti-dsDNA Ab/dsDNA complexes were prevented by pre-treatment with a monoclonal mAb against FcγRIIA. The aggregate of data indicates that anti-dsDNA Abs alone or in a complex with dsDNA strongly affect platelets via the FcγRIIA receptor. The immune activation of platelets with antinuclear Abs may comprise a prothrombotic mechanism underlying a high risk of thrombotic complications in patients with SLE.
|
The immunobiology of autoimmune encephalitides Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): Harry Alexopoulos, Marinos C. Dalakas Abstract
Autoimmune encephalitides, with an estimated incidence of 1.5 per million population per year, although described only 15 years ago, have already had a remarkable impact in neurology and paved the field to autoimmune neuropsychiatry. Many patients traditionally presented with aberrant behavior, especially of acute or subacute onset, and treated with anti-psychotic therapies, turn out to have a CNS autoimmune disease with pathogenic autoantibodies against synaptic antigens responding to immunotherapies. The review describes the clinical spectrum of these disorders, and the pathogenetic role of key autoantibodies directed against: a) cell surface synaptic antigens and receptors, including NMDAR, GABAa, GABAb, AMPA and glycine receptors; b) channels such as AQP4 water-permeable channel or voltage-gated potassium channels; c) proteins that stabilize voltage-gated potassium channel complex into the membrane, like the LGI1 and CASPR2; and d) enzymes that catalyze the formation of neurotransmitters such as Glutamic Acid Decarboxylase (GAD). These antibodies, effectively target excitatory or inhibitory synapses in the limbic system, basal ganglia or brainstem altering synaptic function and resulting in uncontrolled neurological excitability disorder clinically manifested with psychosis, agitation, behavioral alterations, depression, sleep disturbances, seizure-like phenomena, movement disorders such as ataxia, chorea and dystonia, memory changes or coma. Some of the identified triggering factors include: viruses, especially herpes simplex, accounting for the majority of relapses occurring after viral encephalitis, which respond to immunotherapy rather than antiviral agents; tumors especially teratoma, SCLC and thymomas; and biological cancer therapies (immune-check-point inhibitors). As anti-synaptic antibodies persist after viral infections or tumor removal, augmentation of autoreactive B cells which release autoantigens to draining lymph nodes, molecular mimicry and infection-induced bystander immune activation products play a role in autoimmunization process or perpetuating autoimmune neuroinflammation. The review stresses the importance of early detection, clinical recognition, proper antibody testing and early therapy initiation as these disorders, regardless of a known or not trigger, are potentially treatable responding to systemic immunotherapy with intravenous steroids, IVIg, rituximab or even bortezomid
|
Genetic contributors and soluble mediators in prediction of autoimmune comorbidity Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): Adrianos Nezos, Maria-Eleutheria Evangelopoulos, Clio P. Mavragani Abstract
Comorbidities including subclinical atherosclerosis, neuropsychological aberrations and lymphoproliferation represent a major burden among patients with systemic autoimmune diseases; they occur either as a result of intrinsic disease related characteristics including therapeutic interventions or traditional risk factors similar to those observed in general population. Soluble molecules recently shown to contribute to subclinical atherosclerosis in the context of systemic lupus erythematosus (SLE) include among others B-cell activating factor (BAFF), hyperhomocysteinemia, parathormone (PTH) levels and autoantibodies against oxidized lipids. Variations of the 5, 10- methylenetetrahydrofolate reductase (MTHFR) gene -the main genetic determinant of hyperhomocystenemia in humans-as well the interferon regulatory factor-8 (IRF8), FcγRIIA and BAFF genes have been all linked to subclinical atherosclerosis in SLE. BAFF variants have been also found to confer increased risk for subclinical atherosclerosis and lymphoma development in Sjogren's syndrome (SS) patients. Other genes shown to be implicated in SS lymphoproliferation include genes involved a. in inflammatory responses such as the NFκB regulator Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and the Leukocyte immunoglobulin-like receptor A3 (LILRA3) immunoreceptor, b. B cell activation and signaling (BAFF/BAFF-receptor), c. type I IFN pathway such as three-prime repair exonuclease 1 (TREX1), d. epigenetic processes including DNA methylation (MTHFR rs1801133, 677T allele) and e. genomic instability (MTHFR rs1801131, 1298C allele). Emerging soluble biomarkers for SS related lymphoma include mediators of B cell growth and germinal center formation such as BAFF, FMS-like tyrosine kinase 3 ligand (Flt‐3L) and CXCL13 as well as inflammatory contributors such as inteleukin (IL)-17, IL-18, ASC, LILRA3 and the extracellular lipoprotein-associated phospholipase A2 (Lp-PLA2). In regard to fatigue and neuropsychologic features in the setting of SS, contributing factors such as BAFF variants, antibodies against neuropeptides, proteins involved in nervous system function as well as inflammatory cytokines have been reported.
|
Predictive markers of lymphomagenesis in Sjögren's syndrome: From clinical data to molecular stratification Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): Efstathia K. Kapsogeorgou, Michael Voulgarelis, Athanasios G. Tzioufas Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease, affecting predominantly the exocrine glands, a large array of systemic manifestations and high risk of lymphoma development. The latter constitutes the major adverse outcome of SS contributing in the increased morbidity and mortality of the disease. The vast majority of lymphomas in SS are B-cell non-Hodgkin's lymphomas (NHL), primarily indolent mucosa-associated lymphoid tissue (MALT) lymphomas, followed by nodal marginal zone lymphomas (NMZL) and diffuse large B cell lymphomas (DLBCL). In the last 3 decades and due to the adverse impact of NHL in disease outcome, an effort has been undertaken to identify markers and models predicting patients with SS at high risk for lymphoma development. Several epidemiological, clinical, laboratory and histological parameters, some of which are evident at the time of SS diagnosis, were proved to independently predict the development of NHL. These include salivary gland enlargement, skin vasculitis/purpura, glomerulonephritis, peripheral neuropathy, Raynaud's phenomenon, lymphadenopathy, splenomegaly, cytopenias, hypocomplementemia, cryoglobulinemia, rheumatoid factor, anti-Ro/La autoantibodies, hypergammaglobulinemia, serum monoclonal gammopathy, biopsy focus score and organization of lymphocytic infiltrates in the salivary glands into ectopic germinal centers. Prediction models combining some of the afore-mentioned predictors have also been described. However, the identification of specific and sensitive molecular biomarkers, related to the process of lymphomagenesis is still pending. Recently, we described a novel biomarker the miR200b-5p micro-RNA. Low levels of this miRNA in the minor salivary glands, appears to discriminate with high specificity and sensitivity the SS patients who have from those who do not have NHL. miR200b-5p, being expressed years before the clinical onset of NHL, independently predicts NHL development with a predictive value higher than the previously published multifactorial models and has a possible role in the monitoring of therapeutic response. Thus, it is a strong candidate for the identification and follow-up of patients at risk.
|
Autoimmune epithelitis (Sjögren's syndrome); the impact of metabolic status of glandular epithelial cells on auto-immunogenicity Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): Stergios Katsiougiannis, Roxane Tenta, Fotini N. Skopouli Abstract
It is well established that distinct cell metabolic alterations strongly contribute to the modulation of innate and adaptive immune responses. In the past decade the term immunometabolism has been introduced to describe the intracellular metabolic shifts of immune cells that lead to alterations of their functions. The pathogenesis of Sjögren's syndrome (SS), also referred to as autoimmune epithelitis, is not completely understood, but strong evidence supports the central role of the salivary glandular epithelial cells which are the target cells in the initiation of the autoimmune responses. Moreover, the altered epithelial functional phenotype, observed in the salivary gland lesion, may explain their disturbed secretory as well as immunoregulatory functions. From an immunometabolic perspective we have focused our studies on the endoplasmic reticulum (ER) of the salivary gland epithelial cells (SGEC) and the implication of its altered functions in the immunogenicity of these cells in SS. We showed that ER of SGEC in SS patients in situ is stressed and extensively dilated. Using salivary gland cell cultures, we studied in vitro the effect of ER stress on the metabolic behavior and viability of the cells. ER stress induced by thapsigargin increased spliced X-box binding protein-1 (XBP-1, transcription factor that increases the transcription of UPR target genes) levels in a time-dependent manner followed by autophagy and resulted to cell apoptosis. In apoptotic cells, we observed that the autoantigens Ro52 and La were redistributed in apoptotic blebs. During the induction of ER stress autophagy rescued the cells from apoptosis acting as a protective mechanism. We have also shown that adiponectin, a multifunctional hormone, is upregulated in the SGEC of SS patients acting in an autocrine or paracrine manner in the same cells. Adiponectin through activation of AMPK, the major sensor for cell energy demands, protected SGEC from apoptosis. Our results in combination with the work of others indicate that any effort of cell adaptation to ER stress may up regulate a proinflammatory milieu. This enhances the notion that metabolic alterations of the targeted epithelial cells in SS, independently of the cause, may induce an immunogenic phenotype. Therefore, SGEC have the potential to directly regulate susceptibility to and/or severity of autoimmune responses. Since adiponectin plays a vital role in the viability of SGEC through phosphorylation of AMPK, therapeutic interventions using PPAR agonists that upregulate adiponectin and concomitantly modify the energy metabolism, may be promising candidates for therapeutic intervention in SS.
|
Evidence of epigenetic alterations in thrombosis and coagulation: A systematic review Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): M.D. Patsouras, P.G. Vlachoyiannopoulos Abstract
Thrombosis in the context of Cardiovascular disease (CVD) affects mainly the blood vessels supplying the heart, brain and peripheries and it is the leading cause of death worldwide. The pathophysiological thrombotic mechanisms are largely unknown. Heritability contributes to a 30% of the incidence of CVD. The remaining variation can be explained by life style factors such as smoking, dietary and exercise habits, environmental exposure to toxins, and drug usage and other comorbidities.
Epigenetic variation can be acquired or inherited and constitutes an interaction between genes and the environment. Epigenetics have been implicated in atherosclerosis, ischemia/reperfusion damage and the cardiovascular response to hypoxia. Epigenetic regulators of gene expression are mainly the methylation of CpG islands, histone post translational modifications (PTMs) and microRNAs (miRNAs). These epigenetic regulators control gene expression either through activation or silencing. Epigenetic control is mostly dynamic and can potentially be manipulated to prevent or reverse the uncontrolled expression of genes, a trait that renders them putative therapeutic targets. In the current review, we systematically studied and present available data on epigenetic alterations implicated in thrombosis derived from human studies. Evidence of epigenetic alterations is observed in several thrombotic diseases such as Coronary Artery Disease and Cerebrovascular Disease, Preeclampsia and Antiphospholipid Syndrome. Differential CpG methylation and specific histone PTMs that control transcription of prothrombotic and proinflammatory genes have also been associated with predisposing factors of thrombosis and CVD, such us smoking, air pollution, hypertriglyceridemia, occupational exposure to particulate matter and comorbidities including cancer, Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease. These clinical observations are further supported by in vitro experiments and indicate that epigenetic regulation affects the pathophysiology of thrombotic disorders with potential diagnostic or therapeutic utility. |
Epigenetic perspectives on systemic autoimmune disease Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): Panagiota Karagianni, Athanasios G. Tzioufas Abstract
Autoimmune diseases are characterized by increased reactivity of the immune system towards self-antigens, causing tissue damage. Although their etiology remains largely unknown, genetic, microbial, environmental and psychological factors are recognized as contributing elements. Epigenetic changes, including covalent modifications of the DNA and histones, are critical signaling mediators between the genome and the environment, and thus potent regulators of cellular functions. The most extensively studied epigenetic modifications are Cytosine DNA methylation and histone acetylation and methylation on various residues. These are thought to affect chromatin structure and binding of specific effectors that regulate transcription, replication, and other processes. Recent studies have uncovered significant epigenetic alterations in cells or tissues derived from autoimmune disease patients compared to samples from healthy individuals and have linked them with disease phenotypes. Epigenetic changes in specific genes correlate with upregulated or downregulated transcription. For instance, in many systems, reduced DNA methylation and increased histone acetylation of interferon-inducible genes correlate with their increased expression in autoimmune disease patients. Also, reduced DNA methylation of retroelements has been proposed as an activating mechanism and has been linked with increased immune reactivity, while epigenetic differences on the X chromosome could indicate incomplete dosage compensation and explain to some extent the increased susceptibility of females over males towards the development of most autoimmune diseases. Besides changes in epigenetic modifications, differences in the levels of many enzymes catalyzing the addition or removal of these marks as well as proteins that recognize them and function as effector molecules have also been detected in autoimmune patients. Although the existing knowledge cannot fully explain whether epigenetic alterations cause or follow the increased immune activation, their characterization is very useful for understanding the pathogenetic mechanisms and complements genetic and clinical studies. Furthermore, specific epigenetic marks have the potential to serve as biomarkers for disease status, prognosis, and response to treatment. Finally, epigenetic factors are currently being examined as candidate therapeutic targets.
|
Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity Publication date: November 2019 Source: Journal of Autoimmunity, Volume 104 Author(s): Niki Lourou, Maxim Gavriilidis, Dimitris L. Kontoyiannis Abstract
AU-rich elements (AREs) comprise one of the most widely studied families of regulatory RNA structures met in RNAs engaged in complex immunological reactions. A multitude of genetic, molecular, holistic and functional studies have been utilized for the analyses of the AREs and their interactions to proteins that bind to them. Data stemming from these studies brought forth a world of RNA-related check-points against infection, chronic inflammation, tumor associated immunity, and autoimmunity; and the interest to capitalize the interactions of AREs for clinical management and therapy. They also provided lessons on the cellular capabilities of post-transcriptional control. Originally thought as transcript-restricted regulators of turnover and translation, ARE-binding proteins do in fact harbor great versatility and interactivity across nuclear and cytoplasmic compartments; and act as functional coordinators of immune-cellular programs. Harnessing these deterministic functions requires extensive knowledge of their synergies or antagonisms at a cell-specific level; but holds great promise since it can provide the efficacy of combinatorial therapies with single agents.
|
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
Ετικέτες
Πέμπτη 21 Νοεμβρίου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
11:41 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis,
Telephone consultation 11855 int 1193
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου