Κυριακή 10 Νοεμβρίου 2019

Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress

Abstract

Thymoquinone (TQ) is a highly perspective chemotherapeutic agent against gliomas and glioblastomas because of its ability to cross the blood–brain barrier and its selective cytotoxicity for glioblastoma cells compared to primary astrocytes. Here, we tested the hypothesis that TQ-induced mild oxidative stress provokes C6 glioma cell apoptosis through redox-dependent alteration of MAPK proteins. We showed that low concentrations of TQ (20–50 μM) promoted cell-cycle arrest and induced hydrogen peroxide generation as a result of NADH-quinone oxidoreductase 1-catalyzed two-electron reduction of this quinone. Similarly, low concentrations of TQ efficiently conjugated intracellular GSH disturbing redox state of glioma cells and provoking mitochondrial dysfunction. We demonstrated that high concentrations of TQ (70–100 μM) induced reactive oxygen species generation due to its one-electron reduction. TQ provoked apoptosis in C6 glioma cells through mitochondrial potential dissipation and permeability transition pore opening. The identified TQ modes of action on C6 glioma cells open up the possibility of considering it as a promising agent to enhance the sensitivity of cancer cells to standard chemotherapeutic drugs.

Differential expression of novel MicroRNAs from developing fetal heart of Gallus gallus domesticus implies a role in cardiac development

Abstract

Heart development is a complex process regulated by multi-layered genetic as well epigenetic regulators many of which are still unknown. Besides their critical role during cardiac development, these molecular regulators emerge as key modulators of cardiovascular pathologies, where fetal cardiac genes’ re-expression is witnessed. MicroRNAs have recently emerged as a crucial part of signalling cascade in both development and diseases. We aimed to identify, validate, and perform functional annotation of putative novel miRNAs using chicken as a cardiac development model system. Novel miRNAs were obtained through deep sequencing of small RNAs extracted from chicken embryonic cardiac tissue of different developmental stages. After filtering out real pre-miRNAs, their expression analysis, potential target gene’s prediction and functional annotations were performed. Expression analysis revealed that miRNAs were differentially expressed during different developmental stages of chicken heart. The expression of selected putative novel miRNAs was further validated by real-time PCR. Our analysis indicated the presence of novel cardiac miRNAs that might be regulating critical cardiac development events such as cardiac cell growth, differentiation, cardiac action potential generation and signal transduction.

The stimulatory impact of d -δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts

Abstract

Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d-δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d-δ-Tocotrienol (0–25 μmol/L), but not d-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d-δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that d-δ-tocotrienol down-regulated HMG CoA reductase. d-δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.

A novel compound, ferulic acid-bound resveratrol, induces the tumor suppressor gene p15 and inhibits the three-dimensional proliferation of colorectal cancer cells

Abstract

Resveratrol, a phytoalexin present in grapes and other edible foods, has been reported to have beneficial effects against various diseases including cancer. We previously reported that resveratrol and its derivative, caffeic acid-adducted resveratrol, selectively inhibit the three-dimensional (3D) proliferation of a human colorectal cancer cell line, HCT116 with activating KRAS mutation. Herein, we demonstrated that a novel compound, ferulic acid-bound resveratrol, also represses the 3D proliferation of HCT116 cells. We observed that resveratrol conjugated to two ferulic acids represses the 3D proliferation of HCT116 cells more strongly than resveratrol and resveratrol conjugated to one ferulic acid. Resveratrol conjugated to two ferulic acids also inhibited the 3D proliferation of MCF7 human breast cancer cells. We further uncovered that the resveratrol derivative increases the mRNA level of the tumor suppressor p15, a CDK inhibitor that functions as a brake of cell proliferation in HCT116 cells. These results imply that the resveratrol derivative represses 3D proliferation via increasing p15 expression in HCT116 cells.

Exosome-mediated transfer of CLIC1 contributes to the vincristine-resistance in gastric cancer

Abstract

Our previous study shows that high Chloride intracellular channel 1 (CLIC1) expression can efficiently enhance invasion and migration of gastric cancer (GC) cells in vitro. Growing evidences have found that exosomes are involved in chemotherapy resistance in several cancers including GC. We aimed to evaluate the effect of the exosome-mediated transfer of CLIC1 in the vincristine-resistance of GC. The effect of exosome-mediated transfer of CLIC1 on the development of resistance to vincristine in GC cell line SGC-7901 and the potential underlying mechanisms were investigated by Cell Counting Kit-8 (CCK8), RT-PCR, and Western blotting. Exosomes were isolated from cell supernatants by differential ultracentrifugation. Comparing with SGC-7901, the expression level of CLIC1 is higher in vincristine‑resistant cell line SGC-7901/VCR (P < 0.05). After silencing the expression of CLIC1 by RNA interference, the half inhibition concentration (IC50) to vincristine decreased significantly in SGC-7901/VCR, and the expression of CLIC1 decreased significantly in exosomes from SGC-7901/VCR. After 48 h co-culturing with exosomes from SGC-7901/VCR, the IC50 to vincristine in SGC-7901 increased significantly, and the expression of CLIC1, P-gp, and Bcl-2 were significantly up-regulated. CLIC1 was closely associated with the resistance to vincristine in GC, and exosome-mediated transfer of CLIC1 could induce the development of resistance to vincristine in vitro. The possible mechanism was related to up-regulated P-gp and Bcl-2. However, in vivo study was needed to confirm the results in future.

Exosomes derived from cardiac parasympathetic ganglionic neurons inhibit apoptosis in hyperglycemic cardiomyoblasts

Abstract

Diabetic cardiomyopathy is known to involve two forms of cardiac cell death: apoptosis and necrosis. However, it remains unknown whether hyperglycemia-induced apoptosis in the H9c2 cell culture system is inhibited by parasympathetic ganglionic neurons (PGN) derived exosomes (exos). We isolated PGN and sympathetic ganglionic neurons (SGN) from the right stellate ganglion in rats, and derived exos from these sources. H9c2 cells were divided into 4 groups: (1) Control, (2) H9c2 + Glucose (100 mmol/L), (3) H9c2 + Glucose + PGN-exos, and (4) H9c2 + Glucose + SGN-exos. We determined cell proliferation and viability with an MTT assay kit, and assessed apoptotic cell death with TUNEL staining and ELISA. Data were further confirmed by analyzing the presence of pro-apoptotic proteins Caspase-3 and Bax, and anti-apoptotic protein Bcl-2. Glucose exposed H9c2 cells significantly reduced cell viability, which was improved by PGN-exos, but not by SGN-exos. Furthermore, increased apoptosis in hyperglycemia in H9c2 cells was confirmed with TUNEL staining and cell death ELISA which demonstrated significantly (p < 0.05) reduction with PGN-exos treatment, but not with SGN-exos. Moreover, high expression of pro-apoptotic proteins Caspase-3 and Bax was reduced following treatment with PGN-exos; however, SGN-exos were unable to reduce the expression. Significantly reduced anti-apoptotic protein Bcl-2 following glucose treatment was improved with PGN-exos. Therefore, our data suggest that hyperglycemia induces apoptosis in H9c2 cells and decreases cell viability, and that PGN-exos are able to inhibit apoptosis, improve cell viability, and restore levels of anti-apoptotic protein Bcl-2.

Up-regulation of interferon-stimulated gene 15 and its conjugation machinery, UbE1L and UbcH8 expression by tumor necrosis factor-α through p38 MAPK and JNK signaling pathways in human lung carcinoma

Abstract

Interferon-stimulated gene 15 (ISG15) is a member of the family of ubiquitin-like proteins. Similar to ubiquitin, conjugation of ISG15 to cellular proteins requires cascade reactions catalyzed by at least 2 enzymes, UbE1L and UbcH8. Expression of ISG15 and its conjugates is up-regulated in many cancer cells, yet the underlying mechanism of up-regulation is still unclear. In this study, we showed that TNF-α, similar to the response by IFN-β, could directly induce expression of ISG15 and its conjugation machinery, UbE1L and UbcH8, in human lung carcinoma, A549. The early response of their expression was effectively blocked by specific inhibitors of p38 MAPK (SB202190) and JNK (SP600125), but not by B18R, a soluble type-I IFN receptor. In addition, luciferase reporter assay together with serial deletions and site-directed mutagenesis identified a putative C/EBPβ binding element in the ISG15 promoter, which is necessary to the response by TNF-α. Taken together, expression of ISG15 and ISG15 conjugation machinery in cancer cells is directly up-regulated by TNF-α via p38 MAPK and JNK pathways through the activation of C/EBPβ binding element in the ISG15 promoter. This study provides a new insight toward understanding the molecular mechanism of ISG15 system and inflammatory response in cancer progression.

Let-7d modulates the proliferation, migration, tubulogenesis of endothelial cells

Abstract

Endothelial cells are important components of peripheral nerve stumps that contribute to Schwann cell migration and peripheral nerve regeneration. Let-7d modulates the phenotype of Schwann cells and affected peripheral nerve regeneration. However, the regulatory roles of let-7d on endothelial cells remain undetermined. In this study, by transfecting cultured human umbilical vein endothelial cells (HUVECs) with let-7d mimic or let-7d inhibitor, we investigated the biological effects of let-7d on endothelial cells. EdU proliferation assay showed that upregulated let-7d decreased the proliferation rates of HUVECs while downregulated let-7d increased the proliferation rates of HUVECs. Transwell-based migration assay and wound-healing assay demonstrated that let-7d inhibited the migration ability of HUVECs. Matrigel assay suggested that let-7d decreased the numbers of formed meshes and suppressed the tubulogenesis of HUVECs. RNA sequencing, bioinformatic analysis, gene expression validation, and luciferase assay suggested that let-7d directly targeted interferon-induced protein 44 like (IFI44L) gene and negatively regulated the expression of IFI44L. Taken together, our study illuminated the inhibitory roles of let-7d on the proliferation, migration, and tubulogenesis of endothelial cells, identified the target gene of let-7d, and deepened the understanding of the biological effects of let-7d on key elements of peripheral nerve regeneration.

The protective effect of cannabinoid type 2 receptor activation on renal ischemia–reperfusion injury

Abstract

Kidney ischemia reperfusion (IR) injury is an important health problem resulting in acute renal failure. After IR, the inflammatory and apoptotic process is triggered. The relation of Cannabinoid type 2 (CB2) receptor with inflammatory and apoptotic process has been determined. The CB2 receptor has been shown to be localized in glomeruli and tubules in human and rat kidney. Activation of CB2 receptor with JWH-133 has been shown to reduce apoptosis and inflammation. In this study, it was investigated whether CB2 activation with selective CB2 receptor agonist JWH-133 was protective against renal IR injury. Male Sprague–Dawley rats were divided into 5 groups (n = 45). Bilateral ischemia was treated to the IR group rat’s kidneys for 45 min and then reperfusion was performed for 24 h. Three different doses of JWH-133 (0.2, 1 and 5 mg/kg) were administered to the treatment groups at the onset of ischemia. The JWH-133 application at three different doses decreased the glomerular and tubular damage. Additionally, in the renal tissue, nuclear factor-κB, tumour necrosis factor alpha, interleukin-1beta, and caspase-3 levels decreased immunohistochemically. Similarly, JWH-133 application decreased the serum tumour necrosis factor alpha, blood urea nitrogen, creatinine, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, Cystatin C, interleukin-18, interleukin-1beta, interleukin-6, and interleukin-10 levels. We found that JWH-133 and CB2 receptor activation had a curative effect against kidney IR damage. JWH-133 may be a new therapeutic agent in preventing kidney IR damage.

Neuraminidase 1 regulates proliferation, apoptosis and the expression of Cadherins in mammary carcinoma cells

Abstract

The link between Neuraminidase 1 (Neu1) and cancer development has been highlighted in numerous studies. In an effort to understand the role of Neu1 in mammary carcinoma cells, we evaluated the effect of Neu1 on controlling cell proliferation and apoptosis, as well as regulating the expression of cadherins. By blocking the activity of Neu1 with oseltamivir phosphate or using siRNA to silence the Neu1 protein, we observed suppression of cell growth in MCF-7 and MDA-MB-231 cells. Enhanced cleaved caspase 3 expression was demonstrated in breast cancer cells treated with oseltamivir phosphate or in Neu1 knockdown mammary carcinoma cells. We also provided evidence of Neu1 reversing the epithelial-mesenchymal properties with associated changes to the respective cadherin family. Additional observations indicated that the phytochemical, honokiol downregulates the expression of Neu1. As a consequence of blocking Neu1, honokiol reduced the levels of sialic acid in the two subtypes of breast cancer. These findings provide evidence that Neu1 regulates cell growth and death, and facilitates cancer progression by modulating the expression levels of cadherins.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου