Κυριακή 25 Αυγούστου 2019

The antioxidant paradox
Ashok Kumar Tiwari

Pharmacognosy Magazine 2019 15(64):173-175

Pterodon emarginatus hydroalcoholic extract: Antioxidant and photoprotective activities, noncytotoxic effect, and perspective of obtaining formulations with photochemoprotective activity
Wannessa Lenyse Rocha de Carvalho, Larissa Ceres Moreira, Marize Campos Valadares, Danielle Guimaraes A. Diniz, Maria Teresa Freitas Bara

Pharmacognosy Magazine 2019 15(64):176-182

Background: Pterodon emarginatus fruits have phenolic compounds that may be related to photoprotective and antioxidant activities. Objective: This study aims to investigate the antioxidant and photoprotective activities and cytotoxicity effect of hydroalcoholic extract of P. emarginatus (HEP) and obtain formulations with photochemoprotective activity containing HEP in Lanette®, Polawax®, or Focus Gel®. Materials and Methods: Phenolic compounds, antioxidant activity, cytotoxic effect, and in vitro sun protection factor (SPF) were determined in HEP. Lanette®, Polawax®, or Focus Gel® containing HEP or synthetic sunscreen (Eusolex 2292®) or both Eusolex 2292® and HEP were prepared. The in vitro SPF of the formulations was determined to investigate the association of protection between HEP and synthetic sunscreen. Preliminary stability of formulations was evaluated. Results: Phenolic acids and flavonoids were detected by thin-layer chromatography. HEP showed antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl, with EC50 of 19.3 μg/mL, and by ferric reducing antioxidant power methods, in which 1 g of the extract reduces 14,880 μM/L of ferrous sulfate. In cytotoxicity assays, an IC50 of 767.3 μg/mL was obtained, suggesting that the HEP is not cytotoxic. The SPF for HEP was 8 ± 0.31 and it was noted an additive effect to SPF for synthetic sunscreen used, in the three formulations, when associated to HEP, resulting in an improvement of about 24% (Focus Gel®), 65% (Lanette®), and 66% (Polawax®). Only on Lanette®-based formulation, no significant changes of the analyzed parameters were observed during the preliminary stability. Conclusion: It can be suggested that HEP, due to its antioxidant and photoprotective activities, leads to the photochemoprotective effect on the formulations. 

Optimization of ultrasound-assisted extraction of L-ascorbic acid from Adansonia digitata (Linn.) and evaluation of its antityrosinase activity
Hussein Zeitoun, Sabine Lone, Dominique Salameh, Roger Lteif

Pharmacognosy Magazine 2019 15(64):183-188

Background: Adansonia digitata (Linn.) is a widely distributed tree and its edible fruit pulp is well known to have L-ascorbic acid (AA) in high amounts. AA is essential for collagen biosynthesis and has been reported to have antioxidant and skin-lightening properties. Objectives: The aim of this study was to optimize the extraction of AA from the fruit pulp of A. digitata by ultrasound-assisted extraction and to evaluate the antityrosinase activity of the extract. Materials and Methods: A rotatable central composite design was used to investigate the effect of process variables by surface response methodology. The effect of key parameters of extraction temperature (30°C–40°C), extraction time (12–28 min), and ratio solvent to material (7–13 mL/g) was investigated on AA content. Then, mushroom tyrosinase was used to evaluate the antityrosinase activity of the extract. Results: The optimal conditions were obtained with a temperature of 43.4°C, in 23.5 min with a ratio solvent to material of 15.04 mL/g. Under these conditions, AA content from A. digitata (167.4 ± 5.724 mg AA per 100 g dry weight) was determined. Antityrosinase activity of A. digitata extract containing AA was 31.36% ± 1.65%. After degradation of AA, tyrosinase activity decreases to 24.21% ± 1.43%. Conclusion: AA contained in A. digitata extract show to increases significantly the inhibition of enzymatic tyrosinase activity. This extract may have a potential impact on skin depigmentation for the treatment of hyperpigmentation disorders. 

Cell cycle arrest and apoptosis in human liver cancer cell line and A549 cell lines by Turbiconol– A novel sterol isolated from Turbinaria conoides
Kala K Jacob, KJ Prashob Peter, S Muraleedharan Nair, N Chandramohanakumar

Pharmacognosy Magazine 2019 15(64):189-196

Background: Turbinaria conoides, a brown seaweed, is a rich source of oxygenated fucosterols which are capable of suppressing the proliferation of cancer cells. Their specific therapeutically significant biological activity is directly related to the unique structural features of the molecule. This study specifically focuses on extracting unconventional sterol molecules (side chain extension) from this seaweed which can be used as a lead molecule to evolve therapeutical agents. Materials and Methods: To isolate unconventional sterol molecule, for structural elucidation and bioactivity study, sufficient amount of T. conoides was collected from Mandapam, an unique biodiverse environment along the Southeast coast of India. State-of-the-art methods available for the purification and characterization of molecule (High-resolution fast-atom bombardment mass spectrometry, ultraviolet-visible spectroscopy, attenuated total reflection–fourier transform infra-red, One-dimensional nuclear magnetic resonance, and two-dimensional nuclear magnetic resonance) were put in. In vitro bioassays (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide, double staining, and flowcytometry) were carried out against A549 and human liver cancer cell line (HepG2) malignant cells to assess the cytostatic potential. Data were statistically validated. Results: A unique unconventional sterol molecule (Turbiconol) with ethyl and methyl group at C-27 was isolated. This molecule induced apoptosis in A549 and HepG2. However, cell cycle assessment revealed G0/G1 cell cycle arrest in Hep G2 and G2/M checkpoint was responsible for the suppression of A549 cell line. Conclusion: A novel unconventional compound, turbiconol, is reported in this study. In vitro results highlight the potential of this molecule in developing therapeutical combination which can be used for novel treatment methods. 

Anti-adipogenic effect of Terminalia chebula fruit aqueous extract in 3T3-L1 preadipocytes
Anuj Kumar Borah, Pooja Rani Kuri, Archana Singh, Sougata Saha

Pharmacognosy Magazine 2019 15(64):197-204

Background: Phytoextracts, due to its complex nature of formulations yet little or no side effects, have been pursued as alternative medicine for the treatment of complex metabolic disorders such as obesity. One of the appealing strategies to achieve this is the modulation of adipocyte development and function with the treatment of phytoextracts. The current study explored the activity of Terminalia chebula fruit, a component of Ayurveda formulation “Triphala” on these aspects of adipogenesis. Materials and Methods: The effect of T. chebula aqueous fruit extract (CAFE) on the process of adipocyte development and function was investigated. To test the effect of CAFE on adipocyte development, 3T3-L1 preadipocytes were differentiated in the presence and absence of CAFE followed by estimation of lipid content and expression of adipogenic genes. To test its effect on adipocyte function, mature 3T3-L1 adipocytes were treated with the extract followed by estimation of lipolysis. Results: Treatment of 3T3-L1 preadipocytes with this extract had efficiently inhibited differentiation and lipid accumulation in these cells. Gene expression of key adipogenic regulators, peroxisome proliferative-activated receptor γ and C/CAAT enhancer-binding protein α, was suppressed due to the treatment with CAFE. Preadipocytes exposed to CAFE also showed suppressed expression of important adipogenic effector genes such as perilipin 1 and fatty acid synthase. Treatment of differentiated adipocytes with CAFE did not affect total lipid contents of the cells. However, CAFE treatment reduced lipolysis to a small extent. Conclusion: CAFE is an anti-adipogenic and anti-lipolytic agent which inhibits adipocyte differentiation by downregulating expression of key adipogenic genes. 

Liquid chromatography–mass spectrometry/mass spectrometry method development for the determination of carbaryl residue in honey
S Venu, K Santhi, Ashish Rawson, R Paranthaman, K Sureshkumar

Pharmacognosy Magazine 2019 15(64):205-211

Background: Honey, the natural sweetener, obtained from Apis mellifera (honey bees) possesses many medicinal properties. Intensive use of carbamate insecticide in agricultural land not only contaminates the crop but also affects the honey and honey matrices. Hence, this study focused on the analysis of insecticide in honey. Objective: Liquid chromatography–mass spectrometry/mass spectrometry (LC-MS/MS) method development for the determination of Carbaryl insecticide in honey and Comparisons of different extraction techniques to determine the efficiency of extraction process. Materials and Methods: The LC-MS/MS method was developed by optimizing the multiple reaction monitoring (MRM) parameters. Further, the comparison study was done for the optimized extraction techniques such as quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and ultrasound solid phase extraction (SPE) in the developed method. The validation was studied for the developed method as well as the extraction techniques to confirm the robustness of the developed method. Results: The validation study showed good accuracy for the developed method for the concentration from 2 to 9 ppb of the working solution. Limit of detection for the developed method was 0.08 and 0.05 ppb for the fragments 145.1 m/z and 127.1 m/z, respectively. Moreover, limit of quantification for the fragment 145.1 m/z was 0.24 ppb and for 127.1 m/z was 0.16 ppb. The average accuracies for the developed method of both the fragments (145.1 m/z and 127.1 m/z) were 98.51% and 98.15%, respectively. Recovery percentage for optimized QuEChERS ranged from 107% to 112% and for the ultrasound-SPE and from 107% to 118% of the honey samples which were spiked with three different concentrations of analyte. Conclusion: From the validation, it was confirmed that the developed method was robust and simple and provides better sensitivity and intensity and low consumption of chemicals. Thus, the developed method can be used for the routine analysis of carbaryl in honey. 

Anti-diabetic activities of Dactylorhiza hatagirea leaf extract in 3T3-L1 cell line model
Murad Alsawalha, Abeer Mohammed Al-Subaei, Reem Yousuf Al-Jindan, Srinivasa Rao Bolla, Dwaipayan Sen, Janardhana Papayya Balakrishna, Padma Kanchi Ravi, Shiva Shankar Reddy Gollapalli, Vishnu Priya Veeraraghavan, Aruthra Arumugam Pillai, Joel Palpath Joseph, Mohammed Salahuddin, Surapaneni Krishna Mohan

Pharmacognosy Magazine 2019 15(64):212-217

Background: Diabetes is an endocrine disorder that results in altered carbohydrate, protein, and lipid metabolism. Several synthetic drugs used to treat diabetes have adverse effects on prolonged usage. This has given the impetus to the search for alternative medicines with no or less side effects. The plants of Orchidaceae family have displayed antimicrobial, anti-inflammatory, antioxidant, anticancer, and antidiabetic activity. However, their antidiabetic properties are yet to be explored. Materials and Methods: The in vitro antidiabetic properties of Dactylorhiza hatagirea leaf extract were studied by biochemical assays such as α-amylase and α-glucosidase inhibition assays and in vitro cellular assays such as glucose uptake assay and glucose transporter type 4 (GLUT4) expression studies in 3T3-L1 cell line. Results: The methanolic extract of D. hatagirea, at varying concentrations (25 μg-400 μg/mL), did not exhibit cytotoxicity against 3T3-L1 cell line after 24 h of incubation. Methanolic extract of D. hatagirea leaves showed significant inhibition of α-Amylase and α-Glucosidase enzymes. After 24 h of exposure of 3T3-L1 cells to 100 μg/mL of D. hatagirea leaf extract and 100 μM of metformin, the relative expression rates of GLUT4 receptor were elevated when compared with untreated cells. The results also revealed that the amount of 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose taken up by 3T3-L1 cells treated with D. hatagirea leaf extract and metformin is higher than that of untreated cells. Conclusion: Our results suggest that methanolic extract of D. hatagirea leaves has potential antidiabetic activity and could be a plausible resource for antidiabetic agents. 

Nanoencapsulation of Tinospora cordifolia (Willd.) using poly (D, L-lactide) nanoparticles: Yield optimization by response surface methodology and in silico modeling with insulin receptor tyrosine kinase
A Ragavee, Selvaraj Asha Devi

Pharmacognosy Magazine 2019 15(64):218-227

Background: Tinospora cordifolia (TC) is a widely used shrub in Ayurveda system of medicine. The main chemical constituent reported from this shrub is alkaloid with nitrogen heterocycles such as tropane alkaloids, thiazole, piperidines, and pyridine derivatives; nonisoprene indole alkaloids; and pseudoalkaloids with antidiabetic effects. Materials and Methods: The nanoparticles (NPs) were synthesized via solvent evaporation method using a biodegradable poly(D,L-lactide) (PLA) polymer. The NPs were then characterized using spectroscopic methods, X-ray diffraction, and scanning electron microscopy. Release profile and entrapment efficiency of the NPs are studied. Further, the synthesized NPs were evaluated for the inhibitory activity to find the antidiabetic potential and compared with docking analysis. Results: In this study, the TC extract was loaded to PLA NPs by the solvent evaporation method. The synthesis of NPs is sonicated at 40% amplitude at 30 s to get 48% of yield. The loading efficiency was found to be 76.21% for 5 mg and 58.10% for 10 mg. Release profile was observed with controlled release up to 8 h and 70% of TC was released after 40 h. Release kinetic showed good correlation with Higuchi kinetics. The maximum inhibitory percentage of TC-loaded PLA NPs was found to be 92.59 ± 0.854 and shows potential activity for diabetes. The interaction of the compounds with the receptor, fentanyl, and cholic acid showed that the highest binding energies of −6.09 and −6.4 have the potential to activate the insulin receptor. Conclusion: The result proves that TC stem extract possesses a therapeutic effect on diabetes and it is noticeable that acarbose interaction with insulin receptor shows minimum binding affinity when compared to the compounds from mass spectrum shows the highest binding affinity which acts as an insulin activator and responsible for the inhibitory action of α-glucosidase. 

Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source
BL Sudarshan, PK Maheshwar, P Shanmukha Priya, KR Sanjay

Pharmacognosy Magazine 2019 15(64):228-236

Background: Nitzschia palea is a freshwater diatom species (Bacillariophyceae), is easy to cultivate, and is a primary producer of organic matters in aquatic environments. Materials and Methods: In this study, proximate composition in axenic culture of N. palea was determined, phenolic content and volatile compounds were determined for methanol and ethyl acetate extracts. Both the extracts were evaluated for eight different in vitro antioxidant and free radical scavenging activities. Macromolecular damage prevention properties were determined by electrophoretic methods, and antihemolytic activity was validated by lactate dehydrogenase assay, atomic force microscope, and scanning electron microscope image analysis. Results: Both the extracts showed antioxidant, macromolecular damage prevention, and antihemolytic properties. Among the two extracts, ethyl acetate extract showed high activity compared to methanol extract. Based on this result, ethyl acetate extract was evaluated for in vitro anti-inflammatory properties using RAW 264.7 cells. The extract showed IC50 value of 50.73 μg/mL and inhibition of inflammatory cytokines such as nitric oxide, tumor necrosis factor-alpha, and prostaglandin E2. The observed activity was correlated with identified important metabolites such as butyl isobutyl phthalate, pristane, and squalene of methanol extracts. Similar co-relation was observed for 7,9-di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione, methyl palmitate, hentriacontane, and dibutyl phthalate were of ethyl acetate extract. Conclusion: The study concludes that N. palea has potentiality to isolate pharmacologically active metabolites using advanced chromatographic techniques, which can be useful in combating oxidative stress-related inflammatory diseases. 

Anti-proliferative and apoptotic effects of Rheum emodi on human breast adenocarcinoma, MCF-7 Cells, and antimicrobial effectiveness against selected bacterial strains
Juhi Rais, Asif Jafri, Shabana Bano, Neelam Shivnath, Madhu Tripathi, Md Arshad

Pharmacognosy Magazine 2019 15(64):237-242

Background: Breast cancer is the most common gynecological malignancy and one of the leading causes of death in women worldwide. Since antiquity to date, the saga of usage of plants as medicines has been the mainstay among the people. In Ayurvedic and Unani systems of medicine, Rheum emodi (RE) commonly known as Revand chini or Rhubarb is an important medicinal plant. It is a perennial herb belonging to family Polygonaceae and has antimicrobial, anticarcinogenic, and anti-inflammatory properties. The rhizomes of RE have anthraquinone derivatives such as emodin, aloe-emodin, rhein, emodin glycoside, and chrysophanol glycosides. Objective: In this study, we have investigated the anti-cancerous potentials of RE ethanolic extract on human breast adenocarcinoma cells MCF-7 and its antimicrobial effect against selected pathogenic bacterial strains. Materials and Methods: The apoptotic and anti-proliferative potentials of RE on human breast adenocarcinoma cells MCF-7 were observed through cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT]), reactive oxygen species (ROS) generation, nuclear fragmentation, and mitochondrial membrane potential (MMP) analysis. Antimicrobial activity of RE was screened through well-diffusion assay. Results: The results show that RE significantly inhibits the proliferation and induces apoptosis in MCF-7 cells of breast adenocarcinoma in a dose-dependent manner. The MTT cellular viability assay and morphological study reveal that RE significantly induces morphological alterations in MCF-7 cells in a dose-dependent manner and thus inhibits cell proliferation. The cytotoxic effect of RE through the induction of apoptosis is evident by the disruption of MMP, nuclear fragmentation, and ROS accumulation. In addition, we have found that RE is potent enough to decrease the microbial activity of selective bacterial strains. Conclusion: The findings demonstrated that RE promotes significant apoptosis in breast adenocarcinoma MCF-7 cells. Therefore, RE may be a potent candidate that aids for adjuvant cancer treatment though further studies are needed to elucidate the comprehensive mechanistic pathways. 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου