Τρίτη 13 Αυγούστου 2019

Use of F-Specific RNA Bacteriophage to Estimate Infectious Norovirus Levels in Oysters

Abstract

Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a significant food safety risk. Methods for quantification of norovirus in oysters using the quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) are well established, and various studies using RT-qPCR have detected norovirus in a considerable proportion of oyster samples, both in the UK and elsewhere. However, RT-qPCR detects viral genome, and by its nature is unable to discriminate between positive results caused by infectious viruses and those caused by non-infectious remnants including damaged virus particles and naked RNA. As a result, a number of alternative or complementary approaches to RT-qPCR testing have been proposed, including the use of infectious viral indicator organisms, most frequently F-specific RNA bacteriophage (F-RNA phage). In this study, we investigated the relationships between F-RNA phage and norovirus in digestive tissues from two sets of oyster samples, one randomly collected at retail (630 samples), and one linked to suspected norovirus illness outbreaks (nine samples). A positive association and correlation between PCR-detectable levels of genogroup II F-RNA bacteriophage (associated with human faecal contamination) and norovirus was found in both sets of samples, with more samples positive for genogroup II phage, at generally higher levels than norovirus. Levels of both viruses were higher in outbreak-related than retail samples. Infectious F-RNA phage was detected in 47.8% of all retail samples, and for a subset of 224 samples where characterisation of phage was carried out, infectious GII phage was detected in 30.4%. Infectious GII phage was detected in all outbreak-related samples. Determination of infectivity ratios by comparing levels of PCR-detectable (copies/g) and infectious GII phage (pfu/g) revealed that in the majority of cases less than 10% of virus detected by RT-qPCR was infectious. Application of these ratios to estimate infectious norovirus levels indicated that while 77.8% of outbreak-related samples contained > 5 estimated infectious norovirus/g, only 13.7% of retail samples did. Use of a combination of levels of PCR-detectable norovirus and infectious F-RNA phage showed that while only 7.0% of retail samples contained both > 100 copies/g norovirus and > 10 pfu/g F-RNA phage, these combined levels were present in 77.8% of outbreak-related samples, and 75.9% of retail samples with > 5 estimated infectious norovirus/g. We therefore suggest that combining RT-qPCR testing with a test for infectious F-RNA phage has the potential to better estimate health risks, and to better predict the presence of infectious norovirus than RT-qPCR testing alone.

Cold Atmospheric Plasma as a Novel Method for Inactivation of Potato Virus Y in Water Samples

Abstract

While one of the biggest problems we are facing today is water scarcity, enormous quantities of water are still being used in irrigation. If contaminated, this water can act as an effective pathway for the spread of disease-causing agents, like viruses. Here, we present a novel, environmentally friendly method known as cold atmospheric plasma for inactivation of viruses in water used in closed irrigation systems. We measured the plasma-mediated viral RNA degradation as well as the plasma-induced loss of viral infectivity using potato virus Y as a model virus due to its confirmed water transmissibility and economic as well as biological importance. We showed that only 1 min of plasma treatment is sufficient for successful inactivation of viruses in water samples with either high or low organic background. The plasma-mediated inactivation was efficient even at markedly higher virus concentrations than those expected in irrigation waters. Obtained results point to reactive oxygen species as the main mode of viral inactivation. Our laboratory-scale experiments confirm for the first time that plasma has an excellent potential as the eukaryotic virus inactivation tool for water sources and could thus provide a cost-effective solution for irrigation mediated plant virus transmission. The outstanding inactivation efficiency demonstrated by plasma treatments in water samples offers further expansions of its application to other water sources such as reused wastewater or contaminated drinking waters, as well as other plant, animal, and human waterborne viruses, ultimately leading to the prevention of water scarcity and numerous human, animal, and plant infections worldwide.

Assessment of the Applicability of Capsid-Integrity Assays for Detecting Infectious Norovirus Inactivated by Heat or UV Irradiation

Abstract

Human noroviruses are the leading cause of viral gastroenteritis. In the absence of a practical culture technique for routine analysis of infectious noroviruses, several methods have been developed to discriminate between infectious and non-infectious viruses by removing non-viable viruses prior to analysis by RT-qPCR. In this study, two such methods (RNase and porcine gastric mucin) which were designed to remove viruses with compromised capsids (and therefore assumed to be non-viable), were assessed for their ability to quantify viable F-specific RNA bacteriophage (FRNAP) and human norovirus following inactivation by UV-C or heat. It was found that while both methods could remove a proportion of non-viable viruses, a large proportion of non-viable virus remained to be detected by RT-qPCR, leading to overestimations of the viable population. A model was then developed to determine the proportion of RT-qPCR detectable RNA from non-viable viruses that must be removed by such methods to reduce overestimation to acceptable levels. In most cases, nearly all non-viable virus must be removed to reduce the log overestimation of viability to within levels that might be considered acceptable (e.g. below 0.5 log10). This model could be applied when developing alternative pre-treatment methods to determine how well they should perform to be comparable to established infectivity assays.

Norovirus Detection at Oualidia Lagoon, a Moroccan Shellfish Harvesting Area, by Reverse Transcription PCR Analysis

Abstract

Norovirus (NoV) is the leading cause of acute viral gastroenteritis outbreaks in the world. These outbreaks are frequently associated with bivalve shellfish consumption, particularly because these products are often eaten raw or only slightly cooked. In Morocco, regulations concerning the acceptable levels of enteric bacteria indicator organisms in these products have been put in place. However, these regulations do not take into account the risk of viral contamination, and many gastroenteritis outbreaks have been linked to the ingestion of bivalve shellfish from areas that comply with the current food safety criteria. The aim of this study was to investigate NoV presence in shellfish samples (n = 104) collected at four sites owcff Oualidia lagoon (Moroccan Atlantic coast) from November 2015 to February 2017. Samples were analysed using real-time RT-PCR in accordance with the ISO 15216-2 method. NoVs of the genogroup II were detected in 7% of samples that were all collected during the winter months. Moreover, 71% of NoV-positive samples were harvested at sites upstream of the lagoon. These results highlight the need of regularly monitoring viral contamination in bivalve shellfish to limit the risk of viral gastroenteritis outbreaks.

Co-culture with Enterobacter cloacae does not Enhance Virus Resistance to Thermal and Chemical Treatments

Abstract

Human noroviruses (hNoV) are the primary cause of foodborne disease in the USA. Most studies on inactivation kinetics of hNoV and its surrogates are performed in monoculture, while the microbial ecosystem effect on virus inactivation remains limited. This study investigated the persistence of hNoV surrogates, murine norovirus (MNV) and Tulane virus (TuV), along with Aichi virus (AiV) under thermal and chemical inactivation in association with Gram-negative (Enterobacter cloacae) bacteria. Thermal inactivation of viruses in co-culture with E. cloacae revealed no protective effects of bacteria. At 56 °C, AiV with and without bacteria was completely inactivated by 10 min with decimal reduction values (D-values) of 41 and 43 s, respectively. Similar results were also observed for TuV. Conversely, MNV with bacteria was completely inactivated by 10 min while MNV alone remained stable up to 30 min at 56 °C. Both MNV and TuV were slightly more stable than AiV at 63 °C with TuV detection up to 2 min without bacteria. For chemical inactivation on stainless steel surfaces, viruses alone and in association with bacteria were treated with 1000 ppm sodium hypochlorite. Virus association with bacteria had no significant effect (p > 0.05) on virus resistance to bleach inactivation compared to virus alone. Specifically, exposure to 1000 ppm bleach for 5 min resulted in an average of 3.86, 2.14, and 0.94 log10 PFU/ml reductions for TuV, MNV, and AiV without bacteria, respectively. Reductions in TuV, MNV, and AiV were 3.50, 1.88, and 0.61 log10 PFU/ml when associated with E. cloacae, respectively.

Microbial Source Tracking Analysis Using Viral Indicators in Santa Lucía and Uruguay Rivers, Uruguay

Abstract

The aim of this study was to determine the origin (human, bovine or porcine) and the concentration of the fecal sources of contamination in waters from Santa Lucía basin and Uruguay River in Uruguay by using host-specific viral markers (adenoviruses and polyomaviruses) as microbial source tracking (MST). Between June 2015 and May 2016, monthly collections of surface water samples were performed in six sites in Santa Lucía basin and four sites in Uruguay River (n = 120 samples). Viral concentration was carried out using an absorption-elution method. Detection and quantification of human and porcine adenovirus (HAdV and PAdV, respectively) and human and bovine polyomavirus (HPyV and BoPyV, respectively) were performed by quantitative PCR (qPCR). To evaluate the infectivity of circulating HAdV, an integrated cell culture-qPCR (ICC-qPCR) was used. A logistic regression analysis was carried out to estimate the influence of environmental variables on the virus presence in surface waters. Overall, HAdV was the prevalent (18%; 21/120) followed by BoPyV (11%; 13/120) and HPyV (3%; 3/120), whereas PAdV was not detected in this study. The mean concentration ranged from 1.5 × 104 genomic copies/L (gc/L) for HAdV to 1.8 × 102 gc/L for HPyV. Infective HAdVs were observed in two out of ten analyzed samples. A significant effect of environmental temperature (p = 0.001) and river (p = 0.012) on the presence of human viruses was found. These results suggest that fecal contamination could affect the water quality of these rivers, showing deficiencies in the procedure of sewage discharge from regional cities, livestock and dairy farms.

Performance Evaluation of Human-Specific Viral Markers and Application of Pepper Mild Mottle Virus and CrAssphage to Environmental Water Samples as Fecal Pollution Markers in the Kathmandu Valley, Nepal

Abstract

Monitoring of environmental water is crucial to protecting humans and animals from possible health risks. Although numerous human-specific viral markers have been designed to track the presence of human fecal contamination in water, they lack adequate sensitivity and specificity in different geographical regions. We evaluated the performances of six human-specific viral markers [Aichi virus 1 (AiV-1), human adenoviruses (HAdVs), BK and JC polyomaviruses (BKPyVs and JCPyVs), pepper mild mottle virus (PMMoV), and crAssphage] using 122 fecal-source samples collected from humans and five animal hosts in the Kathmandu Valley, Nepal. PMMoV and crAssphage showed high sensitivity (90–100%) with concentrations of 4.5–9.1 and 6.2–7.0 log10 copies/g wet feces (n = 10), respectively, whereas BKPyVs, JCPyVs, HAdVs, and AiV-1 showed poor performances with sensitivities of 30–40%. PMMoV and crAssphage were detected in 40–100% and 8–90%, respectively, of all types of animal fecal sources and showed no significantly different concentrations among most of the fecal sources (Kruskal–Wallis test, P > 0.05), suggesting their applicability as general fecal pollution markers. Furthermore, a total of 115 environmental water samples were tested for PMMoV and crAssphage to identify fecal pollution. PMMoV and crAssphage were successfully detected in 62% (71/115) and 73% (84/115) of water samples, respectively. The greater abundance and higher mean concentration of crAssphage (4.1 ± 0.9 log10 copies/L) compared with PMMoV (3.3 ± 1.4 log10 copies/L) indicated greater chance of detection of crAssphage in water samples, suggesting that crAssphage could be preferred to PMMoV as a marker of fecal pollution.

Surveillance of Enteric Viruses and Thermotolerant Coliforms in Surface Water and Bivalves from a Mangrove Estuary in Southeastern Brazil

Abstract

This study was conducted to evaluate the microbiological quality of a mangrove estuary in the Vitória Bay region, Espírito Santo, Brazil. We analyzed the presence and concentration of enteric viruses and thermotolerant coliforms in water, mussels (Mytella charruana and Mytella guyanensis), and oysters (Crassostrea rhizophorae), collected over a 13-month period. Human adenovirus, rotavirus A (RVA), and norovirus genogroup II were analyzed by quantitative PCR. The highest viral load was found in RVA-positive samples with a concentration of 3.0 × 104 genome copies (GC) L−1 in water samples and 1.3 × 105 GC g−1 in bivalves. RVA was the most prevalent virus in all matrices. Thermotolerant coliforms were quantified as colony-forming units (CFU) by the membrane filtration method. The concentration of these bacteria in water was in accordance with the Brazilian standard for recreational waters (< 250 CFU 100 mL−1) during most of the monitoring period (12 out of 13 months). However, thermotolerant coliform concentrations of 3.0, 3.1, and 2.6 log CFU 100 g−1 were detected in M. charruanaM. guyanensis, and C. rhizophorae, respectively. The presence of human-specific viruses in water and bivalves reflects the strong anthropogenic impact on the mangrove and serves as an early warning of waterborne and foodborne disease outbreaks resulting from the consumption of shellfish and the practice of water recreational activities in the region.

Evaluation of Steady-State Gaseous Chlorine Dioxide Treatment for the Inactivation of Tulane virus on Berry Fruits

Abstract

The effectiveness of steady-state levels of gaseous chlorine dioxide (ClO2) against Tulane virus (TV), a human norovirus surrogate, on berries was determined. The generated ClO2 was maintained at 1 mg/L inside a 269 L glove box to treat two 50 g batches of blueberries, raspberries, and blackberries, and two 100 g batches of strawberries that were immersion coated with TV. The standardized/normalized treatment concentrations of ClO2 ranging from 0.63 to 4.40 ppm-h/g berry were evaluated. When compared to untreated TV contaminated berries, log reductions of TV were in excess of 2.9 log PFU/g for all berry types and conditions tested, indicating that ClO2 was highly effective. In general, the efficacy of all ClO2 treatments on log reductions of TV on all berries was not significantly different (p < 0.05). The average log reduction with strawberries, raspberries, blueberries, and blackberries, treated with the lowest ClO2 concentration, 0.63 ppm-h/g, were 2.98, 3.40, 3.82, and 4.17 log PFU/g, respectively. Overall results suggest that constant levels of ClO2 could be quite effective against foodborne viruses.

Missing the Match Might Not Cost You the Game: Primer-Template Mismatches Studied in Different Hepatitis A Virus Variants

Abstract

Mismatches between template sequences and reverse transcription (RT) or polymerase chain reaction (PCR) primers can lead to underestimation or false negative results during detection and quantification of sequence-diverse viruses. We performed an in silico inclusivity analysis of a widely used RT-PCR assay for detection of hepatitis A virus (HAV) in food, described in ISO 15216-1. One of the most common mismatches found was a single G (primer) to U (template) mismatch located at the terminal 3′-end of the reverse primer region. This mismatch was present in all genotype III sequences available in GenBank. Partial HAV genomes with common or potentially severe mismatches were produced by in vitro transcription and analysed using RT-ddPCR and RT-qPCR. When using standard conditions for RT-qPCR, the mismatch identified resulted in underestimation of the template concentration by a factor of 1.7–1.8 and an increase in 95% limit of detection from 8.6 to 19 copies/reaction. The effect of this mismatch was verified using full-length viral genomes. Here, the same mismatch resulted in underestimation of the template concentration by a factor of 2.8. For the partial genomes, the presence of additional mismatches resulted in underestimation of the template concentration by up to a factor of 232. Quantification by RT-ddPCR and RT-qPCR was equally affected during analysis of RNA templates with mismatches within the reverse primer region. However, on analysing DNA templates with the same mismatches, we found that ddPCR quantification was less affected by mismatches than qPCR due to the end-point detection technique.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου